Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces
dc.contributor.author | Albiac Alesanco, Fernando José | |
dc.contributor.author | Ansorena, José L. | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.date.accessioned | 2022-07-19T11:29:25Z | |
dc.date.available | 2022-07-19T11:29:25Z | |
dc.date.issued | 2022 | |
dc.date.updated | 2022-07-01T11:38:18Z | |
dc.description | Addendum en https://hdl.handle.net/2454/45133 | |
dc.description.abstract | This paper is devoted to providing a unifying approach to the study of the uniqueness of unconditional bases, up to equivalence and permutation, of infinite direct sums of quasi-Banach spaces. Our new approach to this type of problem permits to show that a wide class of vector-valued sequence spaces have a unique unconditional basis up to a permutation. In particular, solving a problem from Albiac and Leránoz (J Math Anal Appl 374(2):394-401, 2011. https://doi.org/10.1016/j.jmaa.2010.09.048) we show that if X is quasi-Banach space with a strongly absolute unconditional basis then the infinite direct sum -1(X) has a unique unconditional basis up to a permutation, even without knowing whether X has a unique unconditional basis or not. Applications to the uniqueness of unconditional structure of infinite direct sums of non-locally convex Orlicz and Lorentz sequence spaces, among other classical spaces, are also obtained as a by-product of our work. | en |
dc.description.sponsorship | F. Albiac acknowledges the support of the Spanish Ministry for Science and Innovation under Grant PID2019-107701GB-I00 for Operators, lattices, and structure of Banach spaces. F. Albiac and J. L. Ansorena acknowledge the support of the Spanish Ministry for Science, Innovation, and Universities under Grant PGC2018-095366-B-I00 for Análisis Vectorial, Multilineal y Aproximación. | en |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Albiac-Alesanco, F.; Ansorena, J. L. (2022). Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces. Positivity: An International Journal Devoted to the Theory and Applications of Positivity in Analysis. 26, | en |
dc.identifier.doi | 10.1007/s11117-022-00905-1 | |
dc.identifier.issn | 1385-1292 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/43360 | |
dc.language.iso | eng | en |
dc.publisher | Kluwer Academic Publishers | en |
dc.relation.ispartof | Positivity: an International Journal Devoted to the Theory and Applications of Positivity in Analysis, 2022, vol. 26 | en |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/ | |
dc.relation.publisherversion | https://doi.org/10.1007/s11117-022-00905-1 | |
dc.rights | ©The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License | en |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Banach lattice | en |
dc.subject | Equivalence of bases | en |
dc.subject | Quasi-Banach space | en |
dc.subject | Unconditional basis | en |
dc.subject | Uniqueness | en |
dc.title | Uniqueness of unconditional basis of infinite direct sums of quasi-Banach spaces | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/publishedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 3a702006-6ba1-41ba-93bf-ea9fee1de239 | |
relation.isAuthorOfPublication.latestForDiscovery | 3a702006-6ba1-41ba-93bf-ea9fee1de239 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Albiac_UniquenessUnconditional_1656674028066_41583.pdf
- Size:
- 599.34 KB
- Format:
- Adobe Portable Document Format
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.78 KB
- Format:
- Item-specific license agreed to upon submission
- Description: