The swallowtail integral in the highly oscillatory region III

dc.contributor.authorFerreira González, Chelo
dc.contributor.authorLópez García, José Luis
dc.contributor.authorPérez Sinusía, Ester
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2021-09-06T12:27:36Z
dc.date.available2022-01-20T00:00:12Z
dc.date.issued2021
dc.description.abstractWe consider the swallowtail integral Ψ(x,y,z):=∫∞−∞ei(t5+xt3+yt2+zt)dt for large values of |z| and bounded values of |x| and |y|. The integrand of the swallowtail integral oscillates wildly in this region and the asymptotic analysis is subtle. The standard saddle point method is complicated and then we use the modified saddle point method introduced in López et al., A systematization of the saddle point method application to the Airy and Hankel functions. J Math Anal Appl. 2009;354:347–359. The analysis is more straightforward with this method and it is possible to derive complete asymptotic expansions of Ψ(x,y,z) for large |z| and fixed x and y. The asymptotic analysis requires the study of three different regions for argz separated by three Stokes lines in the sector −π<argz≤π. The asymptotic approximation is a certain combination of two asymptotic series whose terms are elementary functions of x, y and z. They are given in terms of an asymptotic sequence of the order O(z−n/12) when |z|→∞, and it is multiplied by an exponential factor that behaves differently in the three mentioned sectors. The accuracy and the asymptotic character of the approximations are illustrated with some numerical experiments.en
dc.description.sponsorshipThis research was supported by the Ministerio de Economía y Competitividad (MTM2017-83490-P) and the Universidad Pública de Navarra.en
dc.embargo.lift2022-01-20
dc.embargo.terms2022-01-20
dc.format.extent12 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1080/17476933.2020.1868447
dc.identifier.issn1747-6933
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/40436
dc.language.isoengen
dc.publisherTaylor & Francisen
dc.relation.ispartofComplex Variables and Elliptic Equationsen
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/en
dc.relation.publisherversionhttps://doi.org/10.1080/17476933.2020.1868447
dc.rights© 2021 Informa UK Limited, trading as Taylor & Francis Groupen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectSwallowtail integralen
dc.subjectAsymptotic expansionsen
dc.subjectModified saddle point methoden
dc.titleThe swallowtail integral in the highly oscillatory region IIIen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dspace.entity.typePublication
relation.isAuthorOfPublication8b28fd50-66f4-431e-a219-43d8c02bb077
relation.isAuthorOfPublicatione6cd33c5-6d5e-455c-b8da-32a9702e16c8
relation.isAuthorOfPublication93f891c7-529d-4972-8759-9d943c60949c
relation.isAuthorOfPublication.latestForDiscovery8b28fd50-66f4-431e-a219-43d8c02bb077

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2021020312_Ferreira_SwallowtailIntegral_III.pdf
Size:
502.95 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: