The swallowtail integral in the highly oscillatory region III

Date

2021

Director

Publisher

Taylor & Francis
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/ recolecta
Impacto

Abstract

We consider the swallowtail integral Ψ(x,y,z):=∫∞−∞ei(t5+xt3+yt2+zt)dt for large values of |z| and bounded values of |x| and |y|. The integrand of the swallowtail integral oscillates wildly in this region and the asymptotic analysis is subtle. The standard saddle point method is complicated and then we use the modified saddle point method introduced in López et al., A systematization of the saddle point method application to the Airy and Hankel functions. J Math Anal Appl. 2009;354:347–359. The analysis is more straightforward with this method and it is possible to derive complete asymptotic expansions of Ψ(x,y,z) for large |z| and fixed x and y. The asymptotic analysis requires the study of three different regions for argz separated by three Stokes lines in the sector −π<argz≤π. The asymptotic approximation is a certain combination of two asymptotic series whose terms are elementary functions of x, y and z. They are given in terms of an asymptotic sequence of the order O(z−n/12) when |z|→∞, and it is multiplied by an exponential factor that behaves differently in the three mentioned sectors. The accuracy and the asymptotic character of the approximations are illustrated with some numerical experiments.

Description

Keywords

Swallowtail integral, Asymptotic expansions, Modified saddle point method

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2021 Informa UK Limited, trading as Taylor & Francis Group

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.