The swallowtail integral in the highly oscillatory region III
Date
Director
Publisher
Impacto
Abstract
We consider the swallowtail integral Ψ(x,y,z):=∫∞−∞ei(t5+xt3+yt2+zt)dt for large values of |z| and bounded values of |x| and |y|. The integrand of the swallowtail integral oscillates wildly in this region and the asymptotic analysis is subtle. The standard saddle point method is complicated and then we use the modified saddle point method introduced in López et al., A systematization of the saddle point method application to the Airy and Hankel functions. J Math Anal Appl. 2009;354:347–359. The analysis is more straightforward with this method and it is possible to derive complete asymptotic expansions of Ψ(x,y,z) for large |z| and fixed x and y. The asymptotic analysis requires the study of three different regions for argz separated by three Stokes lines in the sector −π<argz≤π. The asymptotic approximation is a certain combination of two asymptotic series whose terms are elementary functions of x, y and z. They are given in terms of an asymptotic sequence of the order O(z−n/12) when |z|→∞, and it is multiplied by an exponential factor that behaves differently in the three mentioned sectors. The accuracy and the asymptotic character of the approximations are illustrated with some numerical experiments.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2021 Informa UK Limited, trading as Taylor & Francis Group
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.