Strategies to aply water-deficit stress: similarities and disparities at the whole plant metabolism level in medicago truncatula

Date

2021

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

Impacto
No disponible en Scopus

Abstract

Water-deficit stresses such as drought and salinity are the most important factors limiting crop productivity. Hence, understanding the plant responses to these stresses is key for the improvement of their tolerance and yield. In this study M. truncatula plants were subjected to 250 mM NaCl as well as reduced irrigation (No-W) and 250 g/L polyethylene glycol (PEG)-6000 to induce salinity and drought stress, respectively, provoking a drop to −1.7 MPa in leaf water potential. The whole plant physiology and metabolism was explored by characterizing the stress responses at root, phloem sap and leaf organ level. PEG treatment led to some typical responses of plants to drought stress, but in addition to PEG uptake, an important impairment of nutrient uptake and a different regulation of carbon metabolism could be observed compared to No-W plants. No-W plants showed an important redistribution of antioxidants and assimilates to the root tissue, with a distinctive increase in root proline degradation and alkaline invertase activity. On the contrary, salinity provoked an increase in leaf starch and isocitrate dehydrogenase activity, suggesting key roles in the plant response to this stress. Overall, results suggest higher protection of salt-stressed shoots and non-irrigated roots through different mechanisms, including the regulation of proline and carbon metabolism, while discarding PEG as safe mimicker of drought. This raises the need to understand the effect at the whole plant level of the different strategies employed to apply water-deficit stress.

Description

Keywords

Water stress, Phloem sap, PEG, Salt stress, Proline, Carbon metabolism, Ionome, Glutathione

Department

Ciencias / Zientziak

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.