Analyzing the k most probable solutions in EDAs based on bayesian networks

dc.contributor.authorEchegoyen Arruti, Carlos
dc.contributor.authorMendiburu, Alexander
dc.contributor.authorSantana, Roberto
dc.contributor.authorLozano, José Antonio
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2025-01-17T11:48:38Z
dc.date.available2025-01-17T11:48:38Z
dc.date.issued2010
dc.date.updated2025-01-17T11:44:55Z
dc.descriptionAcceso cerrado a este documento. No se encuentra disponible para la consulta pública. Depositado en Academica-e para cumplir con los requisitos de evaluación y acreditación académica del autor/a (sexenios, acreditaciones, etc.).es_ES
dc.description.abstractEstimation of distribution algorithms (EDAs) have been successfully applied to a wide variety of problems but, for themost complex approaches, there is no clear understanding of the way these algorithms complete the search. For that reason, in this work we exploit the probabilistic models that EDAs based on Bayesian networks are able to learn in order to provide new information about their behavior. Particularly, we analyze the k solutions with the highest probability in the distributions estimated during the search. In order to study the relationship between the probabilistic model and the fitness function, we focus on calculating, for the k most probable solutions (MPSs), the probability values, the function values and the correlation between both sets of values at each step of the algorithm. Furthermore, the objective functions of the k MPSs are contrasted with the k best individuals in the population. We complete the analysis by calculating the position of the optimum in the k MPSs during the search and the genotypic diversity of these solutions. We carry out the analysis by optimizing functions of different natures such as Trap5, two variants of Ising spin glass and Max-SAT. The results not only show information about the relationship between the probabilistic model and the fitness function, but also allow us to observe characteristics of the search space, the quality of the setup of the parameters and even distinguish between successful and unsuccessful runs.en
dc.description.sponsorshipThis work has been partially supported by the Saiotek and Research Groups 2007-2012 (IT-242-07) programs (Basque Government), TIN2008-06815-C02-01 and Consolider Ingenio 2010 - CSD2007-00018 projects (Spanish Ministry of Science and Innovation) and COMBIOMED network in computational biomedicine (Carlos III Health Institute). Carlos Echegoyen has a grant from UPV-EHU.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationEchegoyen-Arruti, C., Mendiburu, A., Santana, R., Lozano, J. A. (2010) Analyzing the k most probable solutions in EDAs based on bayesian networks. In Chen Y. (Ed.), Exploitation of linkage learning in evolutionary algorithms (pp. 163-189). Springer. 978-3-642-12834-9
dc.identifier.doi10.1007/978-3-642-12834-9_8
dc.identifier.isbn978-3-642-12834-9
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52987
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofIn Chen, Y. (Ed.). Exploitation of linkage learning in evolutionary algorithms. Berlín: Springer; 2010. p. 163-189
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICINN//TIN2008-06815-C02-01/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/MEC//CSD2007-00018/ES/
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-642-12834-9_8
dc.rights© 2010 Springer-Verlag Berlin Heidelberg
dc.rights.accessRightsinfo:eu-repo/semantics/closedAccess
dc.subjectBayesian networken
dc.subjectSpin glassen
dc.subjectGood individualen
dc.subjectConjunctive normal formen
dc.subjectGeneration generationen
dc.titleAnalyzing the k most probable solutions in EDAs based on bayesian networksen
dc.typeinfo:eu-repo/semantics/bookPart
dspace.entity.typePublication
relation.isAuthorOfPublicationcb45e960-5f19-491c-ba50-555e4ce5f169
relation.isAuthorOfPublication.latestForDiscoverycb45e960-5f19-491c-ba50-555e4ce5f169

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Acceso cerrado.pdf
Size:
136.04 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: