Libros y capítulos de libros DEIM - EIMS Liburuak eta liburuen kapituluak

Permanent URI for this collection

Browse

Recent Submissions

Now showing 1 - 12 of 12
  • PublicationOpen Access
    Narrativas digitales y artes visuales para el aprendizaje de las ciencias
    (Educación Editora, 2021) Napal Fraile, María; Zudaire Ripa, María Isabel; Uriz Doray, Irantzu; Calvelhe Panizo, Lander; Pina Calafi, Alfredo; Armentia, Javier; Ciencias; Zientziak; Ciencias Humanas y de la Educación; Giza eta Hezkuntza Zientziak; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Las narrativas (digitales) permiten construir conocimiento por medio de la organización significativa y creativa de las ideas. Se describe la formación proporcionada a un grupo de docentes para poder realizar narraciones digitales sobre ciencia a través de las artes visuales y plásticas en sus aulas: contenidos mínimos requeridos, dificultades y logros en el proceso.
  • PublicationOpen Access
    Machine learning procedures for daily interpolation of rainfall in Navarre (Spain)
    (Springer, 2023) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    Kriging is by far the most well known and widely used statistical method for interpolating data in spatial random fields. The main reason is that it provides the best linear unbiased predictor and it is an exact interpolator when normality is assumed. The robustness of this method allows small departures from normality, however, many meteorological, pollutant and environmental variables have extremely asymmetrical distributions and Kriging cannot be used. Machine learning techniques such as neural networks, random forest, and k-nearest neighbor can be used instead, because they do not require specific distributional assumptions. The drawback is that they do not take account of the spatial dependence, and for an optimal performance in spatial random fields more complex machine learning techniques could be considered. These techniques also require a relatively large amount of training data and they are computationally challenging to implement. For a reduced number of observations, we illustrate the performance of the aforementioned procedures using daily rainfall data of manual meteorological gauge stations in Navarre, where the only auxiliary variables available are the spatial coordinates and the altitude. The quality of the predictions is carefully checked through three versions of the relative root mean squared error (RRMSE). The conclusion is that when we cannot use Kriging, random forest and neural networks outperform k-nearest neighbor technique, and provide reliable predictions of rainfall daily data with scarce auxiliary information.
  • PublicationOpen Access
    Detecting change-points in the time series of surfaces occupied by pre-defined NDVI categories in continental Spain from 1981 to 2015
    (Springer, 2018) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    The free access to satellite images since more than 40 years ago has provoked a rapid increase of multitemporal derived information of remote sensing data that should be summarized and analyzed for future inferences. In particular, the study of trends and trend changes is of crucial interest in many studies of phenology, climatology, agriculture, hydrology, geology or many other environmental disciplines. Overall, the normalized dierence vegetation index (NDVI), as a satellite derived variable, plays a crucial role because of its usefulness for vegetation and landscape characterization, land use and land cover mapping, environmental monitoring, climate change or crop prediction models. Since the eighties, it can be retrieved all over the world from dierent satellites. In this work we propose to analyze its temporal evolution, looking for breakpoints or change-points in trends of the surfaces occupied by four NDVI classications made in Spain from 1981 to 2015. The results show a decrease of bare soils and semi-bare soils starting in the middle nineties or before, and a slight increase of middle-vegetation and high-vegetation soils starting in 1990 and 2000 respectively.
  • PublicationOpen Access
    Applications of sensing for disease detection
    (Springer, 2021) Castro, Ana Isabel de; Pérez Roncal, Claudia; Thomasson, J. Alex; Ehsani, Reza; López Maestresalas, Ainara; Yang, Chenghai; Jarén Ceballos, Carmen; Wang, Tianyi; Cribben, Curtis; Marín Ederra, Diana; Isakeit, Thomas; Urrestarazu Vidart, Jorge; López Molina, Carlos; Wang, Xiwei; Nichols, Robert L.; Santesteban García, Gonzaga; Arazuri Garín, Silvia; Peña, José Manuel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The potential loss of world crop production from the effect of pests, including weeds, animal pests, pathogens and viruses has been quantifed as around 40%. In addition to the economic threat, plant diseases could have disastrous consequences for the environment. Accurate and timely disease detection requires the use of rapid and reliable techniques capable of identifying infected plants and providing the tools required to implement precision agriculture strategies. The combination of suitable remote sensing (RS) data and advanced analysis algorithms makes it possible to develop prescription maps for precision disease control. This chapter shows some case studies on the use of remote sensing technology in some of the world’s major crops; namely cotton, avocado and grapevines. In these case studies, RS has been applied to detect disease caused by fungi using different acquisition platforms at different scales, such as leaf-level hyperspectral data and canopy-level remote imagery taken from satellites, manned airplanes or helicopter, and UAVs. The results proved that remote sensing is useful, effcient and effective for identifying cotton root rot zones in cotton felds, laurel wilt-infested avocado trees and escaaffected vines, which would allow farmers to optimize inputs and feld operations, resulting in reduced yield losses and increased profts.
  • PublicationOpen Access
    Fiber-optic brillouin distributed sensors: from dynamic to long-range measurements
    (CRC Press, 2018) Loayssa Lara, Alayn; Urricelqui Polvorinos, Javier; Iribas Pardo, Haritz; Mompó Roselló, Juan José; Mariñelarena Ollacarizqueta, Jon; Estadística, Informática y Matemáticas; Ingeniería Eléctrica, Electrónica y de Comunicación; Estatistika, Informatika eta Matematika; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    This chapter focuses on Brillouin optical time-domain analysis (BOTDA) sensors because they are the most successful Brillouin distributed sensors (BDS) type in terms of performance and practical applications. Distributed sensor featuring can be done in the time, coherence, or frequency domains, giving rise to the three main analysis BDS types: BOTDA, Brillouin optical correlation-domain analysis (BOCDA), and Brillouin optical frequency-domain analysis (BOFDA). The distance range of measurements performed using a BOTDA sensor is given by the length of sensing fiber that the system is able to measure with a specified performance in terms of measurement precision and time. The chapter reviews the fundamentals and the research directions in BDSs. The applications of the technology are multiple and in diverse fields¿for instance, in the oil and gas industry, where BDSs have been applied to measure temperature and strain along the umbilical cables used for subsea wells.
  • PublicationOpen Access
    VII Jornadas de enseñanza y aprendizaje de las matemáticas en Navarra: libro de actas
    (2022) Jiménez, Jesús Javier; Lasa Oyarbide, Aitzol; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    La estrecha colaboración entre la Sociedad Navarra de Profesores de Matemáticas TORNAMIRA, junto con el CAP de Pamplona y la UPNA, fue fundamental para hacer posible la celebración de las VII Jornadas de enseñanza de las matemáticas en Navarra, los días 2, 4 y 5 de noviembre de 2022. Una vez más, se cumplió la principal finalidad de las Jornadas que no era otra que lograr un lugar de encuentro para docentes de diferentes etapas educativas, un foro de comunicación de trabajos, experiencias e inquietudes del profesorado de matemáticas en nuestra comunidad, así como un elemento más que contribuya a transmitir y a hacer visible la cultura matemática en la sociedad navarra.
  • PublicationOpen Access
    Simulation-optimization in logistics, transportation, and SCM
    (MDPI, 2021) Juan, Ángel A.; Rabe, Markus; Goldsman, David; Faulín Fajardo, Javier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute of Smart Cities - ISC
    This is a reprint of articles from the Special Issue published online in the open access journal Algorithms (ISSN 1999-4893) (available at: https://www.mdpi.com/journal/algorithms/special issues/Simulation Optimization). This book provides a selected collection of recent works in the growing area of simulation-optimization methods applied to transportation, logistics, and supply chain networks. Many of the authors that contribute to the book are internationally recognized experts in the field, as well as frequent speakers at the prestigious Winter Simulation Conference, where some of the Guest Editors organize an annual track on logistics, transportation and supply chains. Inside this track, it is usual to find several sessions on the concept of simheuristics, a special type of simulation optimization that combines metaheuristics with simulation to deal with complex and large-scale optimization problems under uncertainty conditions. The chapters in the book cover a wide area of logistics and transportation applications, from bike-sharing systems to container terminals, parcel locker systems, or e-commerce applications.
  • PublicationOpen Access
    Open questions in utility theory
    (Springer, 2020) Campión Arrastia, María Jesús; Induráin Eraso, Esteban; Estatistika, Informatika eta Matematika; Institute for Advanced Research in Business and Economics - INARBE; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    Throughout this paper, our main idea is to explore different classical questions arising in Utility Theory, with a particular attention to those that lean on numerical representations of preference orderings. We intend to present a survey of open questions in that discipline, also showing the state-of-art of the corresponding literature.
  • PublicationOpen Access
    The evolution of the notion of overlap functions
    (Springer, 2021) Bustince Sola, Humberto; Mesiar, Radko; Pereira Dimuro, Graçaliz; Fernández Fernández, Francisco Javier; Callejas Bedregal, Benjamin; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    In this chapter we make a review of the notion of overlap function. Although originally developed in order to determine up to what extent a given element belongs to two sets, overlap functions have widely developed in the last years for very different problems. We recall here the motivation that led to the introduction of this new notion and we discuss further theoretical developments that have appeared to deal with other types of problems.
  • PublicationOpen Access
    Standing waves for acoustic levitation
    (Springer, 2020) Marzo Pérez, Asier; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika
    Standing waves are the most popular method to achieve acoustic trapping. Particles with greater acoustic impedance than the propagation medium will be trapped at the pressure nodes of a standing wave. Acoustic trapping can be used to hold particles of various materials and sizes, without the need of a close-loop controlling system. Acoustic levitation is a helpful and versatile tool for biomaterials and chemistry, with applications in spectroscopy and lab-on-a-droplet procedures. In this chapter, multiple methods are presented to simulate the acoustic field generated by one or multiple emitters. From the acoustic field, models such as the Gor'kov potential or the Flux Integral are applied to calculate the force exerted on the levitated particles. The position and angle of the acoustic emitters play a fundamental role, thus we analyse commonly used configurations such as emitter and reflector, two opposed emitters, or arrangements using phased arrays.
  • PublicationOpen Access
    Searching for a Debreu’s open gap lemma for semiorders
    (Springer, 2020) Estevan Muguerza, Asier; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    In 1956 R. D. Luce introduced the notion of a semiorder to deal with indifference relations in the representation of a preference. During several years the problem of finding a utility function was studied until a representability characterization was found. However, there was almost no results on the continuity of the representation. A similar result to Debreu’s Lemma, but for semiorders was never achieved. In the present paper we propose a characterization for the existence of a continuous representation (in the sense of Scott-Suppes) for bounded semiorders. As a matter of fact, the weaker but more manageable concept of ε-continuity is properly introduced for semiorders. As a consequence of this study, a version of the Debreu’s Open Gap Lemma is presented (but now for the case of semiorders) just as a conjecture, which would allow to remove the open-closed and closed-open gaps of a subset S ⊆ R, but now keeping the constant threshold, so that x + 1 < y if and only if g(x) + 1 < g(y) (x, y ∈ S).
  • PublicationOpen Access
    An introduction to the spatio-temporal analysis of satellite remote sensing data for geostatisticians
    (Springer International Publishing, 2018) Militino, Ana F.; Ugarte Martínez, María Dolores; Pérez Goya, Unai; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako Gobernua
    Satellite remote sensing data have become available in meteorology, agriculture, forestry, geology, regional planning, hydrology or natural environment sciences since several decades ago, because satellites provide routinely high quality images with different temporal and spatial resolutions. Joining, combining or smoothing these images for a better quality of information is a challenge not always properly solved. In this regard, geostatistics, as the spatiotemporal stochastic techniques of georeferenced data, is a very helpful and powerful tool not enough explored in this area yet. Here, we analyze the current use of some of the geostatistical tools in satellite image analysis, and provide an introduction to this subject for potential researchers.