Publication:
Ultraviolet erythemal irradiance (UVER) under different sky conditions in Burgos, Spain: multilinear regression and artificial neural network models

Date

2023

Authors

García-Rodríguez, Sol
García-Rodríguez, Ana
Granados-López, D.
Alonso-Tristán, Cristina

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI//TED2021-131563B-I00
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139477OB-I00/ES/recolecta

Abstract

Different strategies for modeling Global Horizontal UltraViolet Erythemal irradiance (GHUVE) based on meteorological parameters measured in Burgos (Spain) have been developed. The experimental campaign ran from September 2020 to June 2022. The selection of relevant variables for modeling was based on Pearson’s correlation coefficient. Multilinear Regression Model (MLR) and artificial neural network (ANN) techniques were employed to model GHUVE under different sky conditions (all skies, overcast, intermediate, and clear skies), classified according to the CIE standard on a 10 min basis. ANN models of GHUVE outperform those based on MLR according to the traditional statistical indices used in this study (R2, MBE, and nRMSE). Moreover, the work proposes a simple all-sky ANN model of GHUVE based on usually recorded variables at ground meteorological stations.

Description

Keywords

Ultraviolet erythemal irradiance, UVER, Statistical analysis, Modeling, ANN, Multilinear regression models

Department

Ingeniería / Ingeniaritza / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

García-Rodríguez, S., García-Rodríguez, A., Granados-López, D., García, I., Alonso-Tristán, C. (2023) Ultraviolet Erythemal Irradiance (UVER) under different sky conditions in Burgos, Spain: Multilinear regression and artificial neural network models. Applied Sicences, 13(19), 1-16. https://doi.org/10.3390/app131910979.

item.page.rights

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.