Ultraviolet erythemal irradiance (UVER) under different sky conditions in Burgos, Spain: multilinear regression and artificial neural network models

dc.contributor.authorGarcía-Rodríguez, Sol
dc.contributor.authorGarcía-Rodríguez, Ana
dc.contributor.authorGranados-López, D.
dc.contributor.authorGarcía Ruiz, Ignacio
dc.contributor.authorAlonso-Tristán, Cristina
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.date.accessioned2024-02-21T13:00:57Z
dc.date.available2024-02-21T13:00:57Z
dc.date.issued2023
dc.date.updated2024-02-21T12:38:07Z
dc.description.abstractDifferent strategies for modeling Global Horizontal UltraViolet Erythemal irradiance (GHUVE) based on meteorological parameters measured in Burgos (Spain) have been developed. The experimental campaign ran from September 2020 to June 2022. The selection of relevant variables for modeling was based on Pearson’s correlation coefficient. Multilinear Regression Model (MLR) and artificial neural network (ANN) techniques were employed to model GHUVE under different sky conditions (all skies, overcast, intermediate, and clear skies), classified according to the CIE standard on a 10 min basis. ANN models of GHUVE outperform those based on MLR according to the traditional statistical indices used in this study (R2, MBE, and nRMSE). Moreover, the work proposes a simple all-sky ANN model of GHUVE based on usually recorded variables at ground meteorological stations.es_ES
dc.description.sponsorshipThis research was funded by MCIN/AEI/ 10.13039/501100011033 and the “European Union Next Generation EU/PRTR grant numbers TED2021-131563B-I00 and PID2022-139477OB-I00 and Junta de Castilla y León, grant number INVESTUN/19/BU/0004.en
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGarcía-Rodríguez, S., García-Rodríguez, A., Granados-López, D., García, I., Alonso-Tristán, C. (2023) Ultraviolet Erythemal Irradiance (UVER) under different sky conditions in Burgos, Spain: Multilinear regression and artificial neural network models. Applied Sicences, 13(19), 1-16. https://doi.org/10.3390/app131910979.es_ES
dc.identifier.doi10.3390/app131910979
dc.identifier.issn2076-3417
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/47534
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofApplied Sciences 2023, 13, 10979en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI//TED2021-131563B-I00/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2022-139477OB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.3390/app131910979
dc.rights© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectUltraviolet erythemal irradianceen
dc.subjectUVERen
dc.subjectStatistical analysisen
dc.subjectModelingen
dc.subjectANNen
dc.subjectMultilinear regression modelsen
dc.titleUltraviolet erythemal irradiance (UVER) under different sky conditions in Burgos, Spain: multilinear regression and artificial neural network modelsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationdcdadcc0-60de-44b9-8af5-c2c523c90d95
relation.isAuthorOfPublication.latestForDiscoverydcdadcc0-60de-44b9-8af5-c2c523c90d95

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
GArcia_UltravioletErythemal.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: