Computation of traffic time series for large populations of IoT devices

dc.contributor.authorIzal Azcárate, Mikel
dc.contributor.authorMorató Osés, Daniel
dc.contributor.authorMagaña Lizarrondo, Eduardo
dc.contributor.authorGarcía-Jiménez, Santiago
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.date.accessioned2019-02-21T10:47:29Z
dc.date.available2019-02-21T10:47:29Z
dc.date.issued2018
dc.description.abstractEn este artículo se estudian las tecnicas para clasificar paquetes de tráfico de red en múltiples clases orientadas a la realización de series temporales de tráfico en escenarios de un elevado numero de clases como pueden ser los proveedores de red para dispositivos IoT. Se muestra que usando técnicas basadas en DStries se pueden monitorizar en tiempo real redes con decenas de miles de dispositivos.es_ES
dc.description.abstractIn this work we study multi class packet classification algorithms to be used in network traffic time series extraction. This study is done for scenarios with a large number of time series to extract such as in monitoring IoT network providers. We show that using DStries based techniques, large networks with tens of thousands of devices can be monitored in real time.en
dc.description.sponsorshipThis work is funded by Spanish MINECO through project PIT (TEC2015-69417-C2-2-R).en
dc.format.extent16 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.3390/s19010078
dc.identifier.issn1424-8220 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/32350
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofSensors, 2019, 19, 78en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MINECO//TEC2015-69417-C2-2-R/ES/
dc.relation.publisherversionhttps://doi.org/10.3390/s19010078
dc.rights© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectIoTen
dc.subjectNetwork trafficen
dc.subjectMonitoringen
dc.subjectDDoSen
dc.subjectPacket classificationen
dc.titleComputation of traffic time series for large populations of IoT devicesen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationf829a159-0938-45d1-a352-d28fb297ed0b
relation.isAuthorOfPublicationcd454059-725e-480a-b896-894e79f307a5
relation.isAuthorOfPublicationc521bf55-a1e7-47b2-ac98-5fbf8c286f7a
relation.isAuthorOfPublicationcf99ec12-8170-4b97-b32a-1e9461c5abd0
relation.isAuthorOfPublication.latestForDiscoveryf829a159-0938-45d1-a352-d28fb297ed0b

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
sensors-19-00078-v2.pdf
Size:
6.54 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: