Publication:
Computation of traffic time series for large populations of IoT devices

Date

2018

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

MINECO//TEC2015-69417-C2-2-R/ES/recolecta

Abstract

En este artículo se estudian las tecnicas para clasificar paquetes de tráfico de red en múltiples clases orientadas a la realización de series temporales de tráfico en escenarios de un elevado numero de clases como pueden ser los proveedores de red para dispositivos IoT. Se muestra que usando técnicas basadas en DStries se pueden monitorizar en tiempo real redes con decenas de miles de dispositivos.


In this work we study multi class packet classification algorithms to be used in network traffic time series extraction. This study is done for scenarios with a large number of time series to extract such as in monitoring IoT network providers. We show that using DStries based techniques, large networks with tens of thousands of devices can be monitored in real time.

Description

Keywords

IoT, Network traffic, Monitoring, DDoS, Packet classification

Department

Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren / Institute of Smart Cities - ISC / Ingeniería Eléctrica, Electrónica y de Comunicación

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.