Publication:
Novel silica hybrid xerogels prepared by co-condensation of TEOS and ClPhTEOS: a chemical and morphological study

Consultable a partir de

Date

2022

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113558RB-C42/ES/

Abstract

The search for new materials with improved properties for advanced applications is, nowadays, one of the most relevant and booming fields for scientists due to the environmental and technological needs of our society. Within this demand, hybrid siliceous materials, made out of organic and inorganic species (ORMOSILs), have emerged as an alternative with endless chemical and textural possibilities by incorporating in their structure the properties of inorganic compounds (i.e., mechanical, thermal, and structural stability) in synergy with those of organic compounds (functionality and flexibility), and thus, bestowing the material with unique properties, which allow access to multiple applications. In this work, synthesis using the sol-gel method of a series of new hybrid materials prepared by the co-condensation of tetraethoxysilane (TEOS) and 4-chlorophenyltriethoxysilane (ClPhTEOS) in different molar ratios is described. The aim of the study is not only the preparation of new materials but also their characterization by means of different techniques (FT-IR, 29Si NMR, X-ray Diffraction, and N2/CO2 adsorption, among others) to obtain information on their chemical behavior and porous structure. Understanding how the chemical and textural properties of these materials are modulated with respect to the molar percentage of organic precursor will help to envisage their possible applications: From the most conventional such as catalysis, adsorption, or separation, to the most advanced in nanotechnology such as microelectronics, photoluminescence, non-linear optics, or sensorics.

Keywords

Chemical-textural properties, Chlorophenyltriethoxysilane, Hybrid materials, Ordered structures, ORMOSILs, Silica species, TEOS, Xerogels

Department

Ciencias / Zientziak / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This research was funded by “Ministerio de Ciencia e Innovación” (Project ref. PID2020-113558RB-C42).

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.