Performance of default-risk measures: the sample matters

dc.contributor.authorAbinzano Guillén, María Isabel
dc.contributor.authorGonzález Urteaga, Ana
dc.contributor.authorMuga Caperos, Luis Fernando
dc.contributor.authorSánchez Alegría, Santiago
dc.contributor.departmentEnpresen Kudeaketaeu
dc.contributor.departmentInstitute for Advanced Research in Business and Economics - INARBEen
dc.contributor.departmentGestión de Empresases_ES
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernua, PI017-PI039 CORRALes
dc.date.accessioned2021-03-17T12:50:17Z
dc.date.available2022-05-01T23:00:09Z
dc.date.issued2020
dc.description.abstractThis paper examines the predictive power of the main default-risk measures used by both academics and practitioners, including accounting measures, market-price-based measures and the credit rating. Given that some measures are unavailable for some firm types, pair wise comparisons are made between the various measures, using same-size samples in every case. The results show the superiority of market-based measures, although their accuracy depends on the prediction horizon and the type of default events considered. Furthermore, examination shows that the effect of within-sample firm characteristics varies across measures. The overall finding is of poorer goodness of fit for accurate default prediction in samples characterised by high book-to-market ratios and/or high asset intangibility, both of which suggest pricing difficulty. In the case of large-firm samples, goodness of fit is in general negatively related to size, possibly because of the 'too-big-to-fail' effect.en
dc.description.sponsorshipThis paper has been possible thanks to the SANFI Research Grant for Young Researchers Edition 2015, the financial support from the Spanish Ministry of Economy, Industry and Competitiveness (ECO2016-77631-R (AEI/FEDER, UE)) and the Spanish Ministry of Science and Innovation (PID2019-104304GB-I00/AEI/10.13039/501100011033). Ana González Urteaga particularly acknowledges financial support from the Spanish Ministry of Science, Innovation and Universities through grant PGC2018-095072-B-I00.en
dc.embargo.lift2022-05-01
dc.embargo.terms2022-05-01
dc.format.extent44 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1016/j.jbankfin.2020.105959
dc.identifier.issn0378-4266
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39435
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofJournal of Banking and Finance, 2020, 120, 105959en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/ECO2016-77631-R/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104304GB-I00/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095072-B-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.jbankfin.2020.105959
dc.rights© 2020 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 4.0en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectCredit-risk measuresen
dc.subjectDefault predictionen
dc.subjectHard to value stocksen
dc.titlePerformance of default-risk measures: the sample mattersen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione8b23aca-9861-499b-b31b-feb5cd8531e9
relation.isAuthorOfPublication095d724d-61c5-408c-b091-6ea37e9beb6b
relation.isAuthorOfPublication887be713-5d9d-4a01-8541-83181a6a58a6
relation.isAuthorOfPublication65cdeaa2-8d5e-498e-a572-946d3d6056e0
relation.isAuthorOfPublication.latestForDiscoverye8b23aca-9861-499b-b31b-feb5cd8531e9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020100030_Abinzano_PerformanceDefault.pdf
Size:
1.12 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: