Publication:
Implementation and testing of Sigma-Point Kalman filters in Simulink for nonlinear estimation

Date

2016

Authors

Iriarte Arrese, Imanol

Publisher

Acceso abierto / Sarbide irekia
Trabajo Fin de Grado / Gradu Amaierako Lana

Project identifier

Abstract

This thesis discusses the implementation of Sigma-Point Kalman Filters (SPKF) for state estimation of nonlinear wind turbine systems. First, a theoretical review of nonlinear Kalman filtering is given. Then the different ways of implementing the algorithms and testing them in SIMULINK are discussed and eventually the developed algorithms are explained and illustrative results from nonlinear simulations are presented. This work confirms that the linear Kalman Filter can be efficiently extended to nonlinear systems by means of Sigma-Point Kalman Filters such as the Unscented Kalman Filter and the Central Difference Kalman Filter. It is also shown that the performance of the square-root implementations available for SPKF is as accurate as that of the original ones, even if they are more computationally efficient algorithms.

Description

Keywords

Nonlinear filtering, Unscented Kalman filter, Square root central difference Kalman filter, Wind Turbine control, MATLAB/SIMULINK, CSparse/CXSparse

Department

Faculty/School

Escuela Técnica Superior de Ingenieros Industriales y de Telecomunicación / Telekomunikazio eta Industria Ingeniarien Goi Mailako Eskola Teknikoa

Degree

Graduado o Graduada en Ingeniería en Tecnologías Industriales por la Universidad Pública de Navarra, Industria Teknologietako Ingeniaritzan Graduatua Nafarroako Unibertsitate Publikoan

Doctorate program

item.page.cita

item.page.rights

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.