Publication: Ultrathin and high-efficiency Pancharatnam-Berry phase metalens for millimeter waves
Date
Authors
Director
Publisher
Abstract
Applying the Pancharatnam–Berry (PB) principle to half-wave plate (HWP) metasurfaces allows the manipulation of wavefronts along with the conversion of the handedness of circularly polarized incident waves by simply rotating the meta-atoms that compose the metasurface. PB metasurfaces (PBM) working in transmission mode with four or more layers have been demonstrated to reach levels of transmission effi- ciency near 100% but also have resulted in bulky structures. On the other hand, compact tri-layer ultrathin (k/8) designs have reached levels near 90% but are more challenging than single- or bi-layer structures from a manufacturing viewpoint. Here, we propose a compact ultrathin (<k/13) transmissive PBM with only two layers (which significantly simplifies the fabrication process) achieving a transmission efficiency level of around 90%, focusing the wavefront of a circularly polarized incident wave and converting its handedness. The metasurface is com- posed of identical bi-layered H-shaped unit cells (meta-atoms) whose transmission phases are chosen by introducing different rotation angles to each unit cell according to a lens spatial phase profile. The structure is analytically and numerically studied and experimentally measured, verifying an excellent behavior as an HWP PB metalens at 87 GHz.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2021 Author(s).
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.