Exploring the complex interplay of anisotropies in magnetosomes of magnetotactic bacteria

dc.contributor.authorGandía Aguado, David
dc.contributor.authorMarcano, Lourdes
dc.contributor.authorGandarias, Lucía
dc.contributor.authorGubieda, Alicia G.
dc.contributor.authorGarcía-Prieto, Ana
dc.contributor.authorFernández Barquín, Luis
dc.contributor.authorEspeso, José Ignacio
dc.contributor.authorMartín Jefremovas, E.
dc.contributor.authorOrue, Iñaki
dc.contributor.authorAbad Díaz de Cerio, Ana
dc.contributor.authorFernández-Gubieda, María Luisa
dc.contributor.authorAlonso Masa, Javier
dc.contributor.departmentCienciases_ES
dc.contributor.departmentZientziakeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2en
dc.date.accessioned2025-06-12T09:25:04Z
dc.date.available2025-06-12T09:25:04Z
dc.date.issued2025-04-14
dc.date.updated2025-06-12T08:58:40Z
dc.description.abstractMagnetotactic bacteria (MTB) are at the forefront of interest for biophysics applications, especially in cancer treatment. Magnetosomes biomineralized by these bacteria are high-quality magnetic nanoparticles that form chains inside the MTB through a highly reproducible, naturally driven process. In particular, Magnetovibrio blakemorei and Magnetospirillum gryphiswaldense MTB exhibit distinct magnetosome morphologies: truncated hexa-octahedral and cuboctahedral shapes, respectively. Despite having identical compositions (magnetite, Fe3O4) and dimensions within a similar size range, their effective uniaxial anisotropies significantly differ at room temperature, with M. blakemorei exhibiting ∼25 kJ/m3 and M. gryphiswaldense ∼ 11 kJ/m3. This prominent anisotropy variance provides a unique opportunity to explore the role of magnetic anisotropy contributions in the magnetic responses of these magnetite-based nanoparticles. This study systematically investigates these responses by examining static magnetization as a function of temperature (M vs T, 5 mT) and magnetic field (M vs μ0H, up to 1 T). Above the Verwey transition temperature (∼110 K), the effective anisotropy is dominated by the shape anisotropy contribution, notably increasing the coercivity for M. blakemorei by up to twofold compared to M. gryphiswaldense. However, below this temperature, the effective uniaxial anisotropy rapidly increases in a nonmonotonic way, significantly changing the magnetic behavior. Computational simulations using a dynamic Stoner–Wohlfarth model provide insights into these phenomena, enabling careful interpretation of experimental data. According to our simulations, below the Verwey temperature, a uniaxial magnetocrystalline contribution progressively emerges, peaking around 22–24 kJ/m3 at 5 K. Our study reveals the complex evolution of magnetocrystalline contributions, which dominate the magnetic response of magnetosomes below the Verwey temperature. This demonstrates the profound impact of anisotropic properties on the magnetic behaviors and applications of magnetite-based nanoparticles and highlights the exceptional utility of magnetosomes as ideal model systems for studying the complex interplay of anisotropies in magnetite-based nanoparticles.en
dc.description.sponsorshipThis work has been funded by the Spanish Government (grants PID2020-115704RB-C3 and PID2023-146448OB-C2 funded by MICIU/AEI/10.13039/501100011033/FEDER, UE) and the Basque Government (grant IT1479-22). L.G. would like to acknowledge the financial support provided through a postdoctoral fellowship from the Basque Government (POS_2022_1_0017). L.M. thanks the Horizon Europe Programme for the financial support provided through a Marie Sklodowska-Curie fellowship (101067742) and the BBVA Foundation for the Leonardo Fellowships for Researchers and Cultural Creators 2022. E.M.J. has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Actions grant agreement 101081455 - YIA and from the Institute for Advanced Studies (IAS) of the University of Luxembourg for a postdoctoral fellowship. The authors thank SGIker (UPV/EHU/ERDF, EU) for technical and human support.
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGandia, D., Marcano, L., Gandarias, L., Gubieda, A. G., García-Prieto, A., Fernández Barquín, L., Espeso, J. I., Martín Jefremovas, E., Orue, I., Abad Diaz de Cerio, A., Fdez-Gubieda, M. L., Alonso, J. (2025). Exploring the complex interplay of anisotropies in magnetosomes of magnetotactic bacteria. ACS Omega, 10(16), 16061-16072. https://doi.org/10.1021/acsomega.4c09371.
dc.identifier.doi10.1021/acsomega.4c09371
dc.identifier.issn2470-1343
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/54220
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.ispartofACS Omega (2025), vol. 10, núm. 6
dc.relation.projectIDinfo:eu-repo/grantAgreement/European Commission/Horizon 2020 Framework Programme/101067742/
dc.relation.projectIDinfo:eu-repo/grantAgreement/European Commission/Horizon 2020 Framework Programme/101081455/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115704RB-C31/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115704RB-C32/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-115704RB-C33/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-146448OB-C21/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2021-2023/PID2023-146448OB-C22/ES/
dc.relation.publisherversionhttps://doi.org/10.1021/acsomega.4c09371
dc.rights© 2025 The Authors. Published by American Chemical Society. This article is licensed under CC-BY-NC-ND 4.0.
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectBacteriaen
dc.subjectMagnetic propertiesen
dc.subjectMagnetiteen
dc.subjectMorphologyen
dc.subjectNanoparticlesen
dc.titleExploring the complex interplay of anisotropies in magnetosomes of magnetotactic bacteriaen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicationed5442de-0e2b-435a-a06f-58e70e13c5ea
relation.isAuthorOfPublication.latestForDiscoveryed5442de-0e2b-435a-a06f-58e70e13c5ea

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Gandia_Exploring.pdf
Size:
4.37 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
Gandia_ExploringComplex_MatCompl.pdf
Size:
271.47 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: