Publication:
Gender stereotyping impact in facial expression recognition

dc.contributor.authorDomínguez Catena, Iris
dc.contributor.authorPaternain Dallo, Daniel
dc.contributor.authorGalar Idoate, Mikel
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.funderUniversidad Pública de Navarra / Nafarroako Unibertsitate Publikoaes
dc.date.accessioned2023-09-07T07:23:07Z
dc.date.available2024-01-31T00:00:15Z
dc.date.issued2023
dc.date.updated2023-09-07T07:09:18Z
dc.description.abstractFacial Expression Recognition (FER) uses images of faces to identify the emotional state of users, allowing for a closer interaction between humans and autonomous systems. Unfortunately, as the images naturally integrate some demographic information, such as apparent age, gender, and race of the subject, these systems are prone to demographic bias issues. In recent years, machine learning-based models have become the most popular approach to FER. These models require training on large datasets of facial expression images, and their generalization capabilities are strongly related to the characteristics of the dataset. In publicly available FER datasets, apparent gender representation is usually mostly balanced, but their representation in the individual label is not, embedding social stereotypes into the datasets and generating a potential for harm. Although this type of bias has been overlooked so far, it is important to understand the impact it may have in the context of FER. To do so, we use a popular FER dataset, FER+, to generate derivative datasets with different amounts of stereotypical bias by altering the gender proportions of certain labels. We then proceed to measure the discrepancy between the performance of the models trained on these datasets for the apparent gender groups. We observe a discrepancy in the recognition of certain emotions between genders of up to 29 % under the worst bias conditions. Our results also suggest a safety range for stereotypical bias in a dataset that does not appear to produce stereotypical bias in the resulting model. Our findings support the need for a thorough bias analysis of public datasets in problems like FER, where a global balance of demographic representation can still hide other types of bias that harm certain demographic groups.en
dc.description.sponsorshipThis work was funded by a predoctoral fellowship of the Research Service of Universidad Publica de Navarra, the Spanish MICIN (PID2019-108392GB-I00 and PID2020-118014RB-I00 / AEI / 10.13039/501100011033), and the Government of Navarre (0011-1411-2020-000079 - Emotional Films).en
dc.embargo.lift2024-01-31
dc.embargo.terms2024-01-31
dc.format.mimetypeapplication/pdfen
dc.identifier.citationDominguez-Catena, I., Paternain, D., & Galar, M. (2023). Gender stereotyping impact in facial expression recognition. En I. Koprinska, P. Mignone, R. Guidotti, S. Jaroszewicz, H. Fröning, F. Gullo, P. M. Ferreira, D. Roqueiro, G. Ceddia, S. Nowaczyk, J. Gama, R. Ribeiro, R. Gavaldà, E. Masciari, Z. Ras, E. Ritacco, F. Naretto, A. Theissler, P. Biecek, … S. Pashami (Eds.), Machine Learning and Principles and Practice of Knowledge Discovery in Databases (Vol. 1752, pp. 9-22). Springer Nature Switzerland. https://doi.org/10.1007/978-3-031-23618-1_1en
dc.identifier.doi10.1007/978-3-031-23618-1_1
dc.identifier.isbn978-3-031-23617-4es_ES
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/46244
dc.language.isoengen
dc.publisherSpringeren
dc.relation.ispartofKoprinska, I.; Mignone, P.; Guidotti, R.; Jaroszewicz, S.; Fröning, H.; Gullo, F.; Ferreira, P. M.; Roqueiro, D.; Ceddia, G.; Nowaczyk, S.; Gama, J.; Ribeiro, R.; Gavaldà, R.; Masciari, E.; Ras, Z.; Ritacco, E.; Naretto, F.; Theissler, A.; Biecek, P.; Pashami, S. (Eds.). ECML PKDD 2022: Machine Learning and Principles and Practice of Knowledge Discovery in Databases. Cham: Springer; 2023. p.9-22 978-3-031-23617-4en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-118014RB-I00/ES/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/Gobierno de Navarra//0011-1411-2020-000079en
dc.relation.publisherversionhttps://doi.org/10.1007/978-3-031-23618-1_1
dc.rights© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectFacial expression recognitionen
dc.subjectGender stereotypingen
dc.subjectStereotypical biasen
dc.titleGender stereotyping impact in facial expression recognitionen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versionVersión aceptada / Onetsi den bertsioaes
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dspace.entity.typePublication
relation.isAuthorOfPublication2ba22a83-13df-4d11-8e44-f9e97dbc13d0
relation.isAuthorOfPublicationca16c024-51e4-4f8f-b457-dc5307be32d9
relation.isAuthorOfPublication44c7a308-9c21-49ef-aa03-b45c2c5a06fd
relation.isAuthorOfPublication.latestForDiscovery2ba22a83-13df-4d11-8e44-f9e97dbc13d0

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Dominguez_GenderStereotyping.pdf
Size:
302.88 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: