Publication:
Uniform convergent expansions of the Gauss hypergeometric function in terms of elementary functions

Date

2018

Director

Publisher

Taylor & Francis
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-83490-P/ES/recolecta

Abstract

We consider the hypergeometric function 2F1(a, b; c; z) for z ∈ C \ [1,∞). For Ra ≥ 0, we derive a convergent expansion of 2F1(a, b; c; z) in terms of the function (1 − z)−a and of rational functions of z that is uniformly valid for z in any compact in C \ [1,∞). When a ∈ N, the expansion also contains a logarithmic term of the form log(1 − z). For Ra ≤ 0, we derive a convergent expansion of (1 − z)a 2F1(a, b; c; z) in terms of the function (1 − z)−a and of rational functions of z that is uniformly valid for z in any compact in C \ [1,∞) in the exterior of the circle |z − 1| = r for arbitrary r > 0. The expansions are accompanied by realistic error bounds. Some numerical experiments show the accuracy of the approximation.

Description

This is an accepted manuscript of an article published by Taylor & Francis in Integral Transforms and Special Functions on 2018-09-28, available online: https://doi.org/10.1080/10652469.2018.1525369

Keywords

Hypergeometric function, Convergent expansions, Uniform expansions

Department

Matematika eta Informatika Ingeniaritza / Institute for Advanced Materials and Mathematics - INAMAT2 / Ingeniería Matemática e Informática

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2018 Informa UK Limited, trading as Taylor & Francis Group

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.