Predicción de variables dasométricas del Inventario Forestal Nacional mediante datos LIDAR con técnicas de minera de datos

dc.contributor.advisorTFEÁlvarez-Mozos, Jesús
dc.contributor.advisorTFESanz Delgado, José Antonio
dc.contributor.affiliationEscuela Técnica Superior de Ingenieros Agrónomoses_ES
dc.contributor.affiliationNekazaritza Ingeniarien Goi Mailako Eskola Teknikoaeu
dc.contributor.authorSegú Tell, Jordi
dc.coverage.spatialeast=-1.6453898881912976; north=42.81266896723002; name=Navarra, España
dc.date.accessioned2018-10-26T13:06:33Z
dc.date.available2023-10-01T23:00:12Z
dc.date.issued2018
dc.date.updated2018-10-23T11:16:19Z
dc.description.abstractThe management of forest resources is essential for the development of our society. This requires a forest management planning based on innovative studies, according to new technologies and seeking to lower costs. In this project, a methodology has been developed for the extraction of predictive regression models to determine the main dasometric variables of the beech forest layer with over 70% of the forest cover density in Navarre. For this purpose, data mining techniques and Python as programming language have been used. The inputs of the work are: data from the plots of the national forest inventory (dependent variables) and statistics derived from the LIDAR-PNOA flight for these same plots (independent variables) obtained with the LasTools software. The output is the model that best fits the input data, determined by the methodology used.en
dc.description.degreeMáster Universitario en Sistemas de Información Geográfica y Teledetección por la Universidad Pública de Navarraes_ES
dc.description.degreeInformazio Geografikoko Sistemetako eta Teledetekzioko Unibertsitate Masterra Nafarroako Unibertsitate Publikoaneu
dc.embargo.lift2023-10-01
dc.embargo.terms2023-10-01
dc.format.mimetypeapplication/pdfen
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/31249
dc.language.isospaen
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectLIDARes_ES
dc.subjectIFNes_ES
dc.subjectPythones_ES
dc.subjectData mininges_ES
dc.subjectFagus sylvaticaes_ES
dc.subject.geoIngeniería cartográfica, geodésica y fotogrametríaes_ES
dc.titlePredicción de variables dasométricas del Inventario Forestal Nacional mediante datos LIDAR con técnicas de minera de datoses_ES
dc.typeinfo:eu-repo/semantics/masterThesis
dspace.entity.typePublication
relation.isAdvisorTFEOfPublicationf2f80825-fc58-4e45-9814-9eb10b68c4a9
relation.isAdvisorTFEOfPublication04db2b7d-89dc-4815-be4a-4b201cdce99b
relation.isAdvisorTFEOfPublication.latestForDiscoveryf2f80825-fc58-4e45-9814-9eb10b68c4a9

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
tfm_utlima_version.pdf
Size:
2.15 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.78 KB
Format:
Item-specific license agreed to upon submission
Description: