Fuzzy sets complement-based gated recurrent unit

dc.contributor.authorFerrero Jaurrieta, Mikel
dc.contributor.authorPereira Dimuro, Graçaliz
dc.contributor.authorTakáč, Zdenko
dc.contributor.authorSantiago, Regivan
dc.contributor.authorFernández Fernández, Francisco Javier
dc.contributor.authorBustince Sola, Humberto
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernuaes
dc.date.accessioned2022-03-10T07:59:59Z
dc.date.available2022-03-10T07:59:59Z
dc.date.issued2021
dc.description.abstractGated Recurrent Units (GRU) are neural network gated architectures that simplify other ones (suchas, LSTM) by joining gates mainly. For this, instead of using two gates, if𝑥is the first gate, standardoperation1−𝑥is used to generate the second one, optimizing the number of parameters. In this work, we interpret this information as a fuzzy set, and we generalize the standard operation using fuzzy negations, and improving the accuracy obtained with the standard one.en
dc.description.sponsorshipGrant PID2019-108392GB-I00 funded by MCIN/AEI/10.13039/501100011033 and by Tracasa Instrumental and the Immigration Policy and Justice Department of the Government of Navarre.en
dc.format.extent9 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.issn1613-0073
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/42468
dc.language.isoengen
dc.publisherCEUR Workshop Proceedings (CEUR-WS.org)en
dc.relation.ispartofWILF’21: The 13th International Workshop on Fuzzy Logic and Applications, Dec. 20–22, 2021, Vietri sul Mare, Italyen
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/
dc.rights© 2021 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subjectFuzzy set complementen
dc.subjectFuzzy negationsen
dc.subjectRecurrent neural networksen
dc.subjectGated recurrent uniten
dc.titleFuzzy sets complement-based gated recurrent uniten
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication3e9cb4ee-2d64-47ff-9f40-d7519dc6cb0d
relation.isAuthorOfPublication4eb4bdb2-e3c9-46a2-983f-dfc0dfe20e54
relation.isAuthorOfPublication741321a5-40af-41aa-bacb-5da283dd18ab
relation.isAuthorOfPublication1bdd7a0e-704f-48e5-8d27-4486444f82c9
relation.isAuthorOfPublication.latestForDiscovery3e9cb4ee-2d64-47ff-9f40-d7519dc6cb0d

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Ferrero_FuzzySets.pdf
Size:
1000.88 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: