Publication:
Content-aware image smoothing based on fuzzy clustering

Date

2022

Authors

Mir Fuentes, Arnau
Mendióroz Iriarte, Maite
Baets, Bernard de

Director

Publisher

Springer
Acceso abierto / Sarbide irekia
Contribución a congreso / Biltzarrerako ekarpena
Versión aceptada / Onetsi den bertsioa

Project identifier

European Commission/Horizon 2020 Framework Programme/801586openaire
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-108392GB-I00/ES/recolecta

Abstract

Literature contains a large variety of content-aware smoothing methods. As opposed to classical smoothing methods, content-aware ones intend to regularize the image while avoiding the loss of relevant visual information. In this work, we propose a novel approach to contentaware image smoothing based on fuzzy clustering, specifically the Spatial Fuzzy c-Means (SFCM) algorithm. We develop the proposal and put it to the test in the context of automatic analysis of immunohistochemistry imagery for neural tissue analysis.

Description

Keywords

Fuzzy clustering, Image smoothing, Progressive supranuclear palsy

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Antunes-Santos, F., Lopez-Molina, C., Mir-Fuentes, A., Mendioroz, M., & De Baets, B. (2022). Content-aware image smoothing based on fuzzy clustering. En D. Ciucci, I. Couso, J. Medina, D. Ślęzak, D. Petturiti, B. Bouchon-Meunier, & R. R. Yager (Eds.), Information Processing and Management of Uncertainty in Knowledge-Based Systems (Vol. 1602, pp. 443-454). Springer International Publishing. https://doi.org/10.1007/978-3-031-08974-9_35

item.page.rights

© 2022 Springer Nature Switzerland AG

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.