Finite element method for minimizing geometric error in the bending of large sheets

dc.contributor.authorGil del Val, Alain
dc.contributor.authorPenalva Oscoz, Mariluz
dc.contributor.authorVeiga Suárez, Fernando
dc.contributor.authorEl Moussaoui, Bilal
dc.contributor.departmentIngenieríaes_ES
dc.contributor.departmentIngeniaritzaeu
dc.date.accessioned2025-02-25T08:19:33Z
dc.date.issued2024-10-31
dc.date.updated2025-02-25T08:08:42Z
dc.description.abstractMinimizing geometric error in the bending of large sheets remains a challenging endeavor in the industrial environment. This specific industrial operation is characterized by protracted cycles and limited batch sizes. Coupled with extended cycle times, the process involves a diverse range of dimensions and materials. Given these operational complexities, conducting practical experimentation for data extraction and control of industrial process parameters proves to be unfeasible. To gain insights into the process, finite element models serve as invaluable tools for simulating industrial processes for reducing experimental cost. Consequently, the primary objective of this research endeavor is to develop an intelligent finite element model capable of providing operators with pertinent information regarding the optimal range of key parameters to mitigate geometric error in the bending of large sheets. This prediction model is based on response surface method to predict the bending diameter of the pipe taking into account three main process parameters: the plate thickness, the length, and the roll displacement. These results present promising prospects for the automation of the industrial process because the average geometric error in curvature is recorded at 0.97%, thereby meeting the stringent industrial requirement for achieving such bending with minimal equivalent plastic deformation.en
dc.description.sponsorshipThe research is partially supported the European Union's Horizon 2020 research and innovation program under grant agreement no. 958303.
dc.embargo.lift2025-10-31
dc.embargo.terms2025-10-31
dc.format.mimetypeapplication/pdfen
dc.identifier.citationGil Del Val, A., Penalva, M., Veiga, F., Moussaoui, B. E. (2024) Finite element method for minimizing geometric error in the bending of large sheets. International Journal of Advanced Manufacturing Technology, 135(7-8), 3737-3746. https://doi.org/10.1007/s00170-024-14685-3.
dc.identifier.doi10.1007/s00170-024-14685-3
dc.identifier.issn0268-3768
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/53554
dc.language.isoeng
dc.publisherSpringer
dc.relation.ispartofThe International Journal of Advanced Manufacturing Technology (2024) 135:3737–3746
dc.relation.projectIDinfo:eu-repo/grantAgreement/European Commission/Horizon 2020 Framework Programme/958303/
dc.relation.publisherversionhttps://doi.org/10.1007/s00170-024-14685-3
dc.rights© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2024.
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.subjectBendingen
dc.subjectFinite element methoden
dc.subjectResponse surface methoden
dc.subjectRollingen
dc.titleFinite element method for minimizing geometric error in the bending of large sheetsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication38baac98-d5ca-4a58-ac4c-b773ee61d7cb
relation.isAuthorOfPublication2b7b0dc3-53e2-4710-b104-17eea797eeff
relation.isAuthorOfPublication.latestForDiscovery2b7b0dc3-53e2-4710-b104-17eea797eeff

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Gil_FiniteElement.pdf
Size:
511.45 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: