Distributed dynamic strain sensing via perfect periodic coherent codes and a polarization diversity receiver

Date

2019

Authors

Shiloh, Lihi
Arbel, Nadav
Levanon, Nadav
Eyal, Avishay

Director

Publisher

IEEE
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

ES/1PE/TEC2016-76021/
Impacto
No disponible en Scopus

Abstract

Rayleigh scattering-based dynamic strain sensing with high spatial resolution, fast update rate, and high sensitivity is highly desired for applications such as structural health monitoring and shape sensing. A key issue in dynamic strain sensing is the tradeoff between spatial resolution and the Signal-to-Noise Ratio (SNR). This tradeoff can be greatly relaxed with the use of coding. A sequence of optical pulses is injected into the fiber and the detected backscattered signal is cross correlated with the original signal. With the use of coding, SNR is indeed improved, but if the sequence is not well chosen, the resulting Peak to Sidelobe Ratio (PSR) can be rather low. An excellent choice of codes are biphase Legendre sequences which offer near Perfect Periodic Autocorrelation (PPA). Other common issues in Rayleigh scattering-based sensing techniques are signal fading and dynamic range. The former issue can occur due to destructive interference between lightwaves that are scattered from the same spatial resolution cell and, in coherent detection schemes, when the polarization states of the backscattered light and the reference light are mismatched. The latter issue is a concern in phase sensitive schemes which require signal jumps not to exceed 2π. In this paper, a biphase Legendre sequence with 6211 pulses is used in conjunction with polarization diversity scheme and a PM fiber. The setup provides two independent measurements of the sensing fiber complex profile and achieves highly sensitive, distributed dynamic strain sensing with very low probability of fading. In addition, the system can handle both very large perturbation signals and very small perturbation signals. The system operated at a scan rate of ∼107 kHz and achieved spatial resolution of ∼10 cm and sensitivity of ∼1.1mrad/√ Hz. The ratio between the powers of the maximum and minimum excitations that can be measured by the system is 136 dB.

Description

Keywords

Fiber optical sensors, Optical time domain reflectometry, Phase modulation, Rayleigh scattering

Department

Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren / Institute of Smart Cities - ISC / Ingeniería Eléctrica, Electrónica y de Comunicación

Faculty/School

Degree

Doctorate program

item.page.cita

J. J. Mompó, L. Shiloh, N. Arbel, N. Levanon, A. Loayssa and A. Eyal, 'Distributed Dynamic Strain Sensing via Perfect Periodic Coherent Codes and a Polarization Diversity Receiver,' in Journal of Lightwave Technology, vol. 37, no. 18, pp. 4597-4602, 15 Sept.15, 2019.

item.page.rights

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.