Publication:
On perfectly homogeneous bases in quasi-Banach spaces

Date

2009

Director

Publisher

Hindawi Publishing Corporation
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

Métricas Alternativas

Abstract

For 0 < p < infinity the unit vector basis of l(p) has the property of perfect homogeneity: it is equivalent to all its normalized block basic sequences, that is, perfectly homogeneous bases are a special case of symmetric bases. For Banach spaces, a classical result of Zippin (1966) proved that perfectly homogeneous bases are equivalent to either the canonical c(0)-basis or the canonical l(p)-basis for some 1 <= p < infinity. In this note, we show that (a relaxed form of) perfect homogeneity characterizes the unit vector bases of l(p) for 0 < p < 1 as well amongst bases in nonlocally convex quasi-Banach spaces. Copyright (C) 2009 F. Albiac and C. Leranoz.

Description

Keywords

Orlicz sequence spaces, Uniqueness, Mathematics

Department

Matemáticas / Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

item.page.rights

© 2009 F. Albiac and C. Leránoz. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.