Gaze estimation problem tackled through synthetic images

dc.contributor.authorGarde Lecumberri, Gonzalo
dc.contributor.authorLarumbe Bergera, Andoni
dc.contributor.authorBossavit, Benoît
dc.contributor.authorCabeza Laguna, Rafael
dc.contributor.authorPorta Cuéllar, Sonia
dc.contributor.authorVillanueva Larre, Arantxa
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzareneu
dc.date.accessioned2021-03-05T11:32:50Z
dc.date.available2021-03-05T11:32:50Z
dc.date.issued2020
dc.descriptionTrabajo presentado al Symposium on Eye Tracking Research and Applications (ETRA ’20 Short Papers). Stuttgart, 2020es_ES
dc.description.abstractIn this paper, we evaluate a synthetic framework to be used in the field of gaze estimation employing deep learning techniques. The lack of sufficient annotated data could be overcome by the utilization of a synthetic evaluation framework as far as it resembles the behavior of a real scenario. In this work, we use U2Eyes synthetic environment employing I2Head datataset as real benchmark for comparison based on alternative training and testing strategies. The results obtained show comparable average behavior between both frameworks although significantly more robust and stable performance is retrieved by the synthetic images. Additionally, the potential of synthetically pretrained models in order to be applied in user's specific calibration strategies is shown with outstanding performances.en
dc.description.sponsorshipThe authors would like to acknowledge the Spanish Ministry of Science, Innovation and Universities for their support under Contract TIN2017-84388-R.en
dc.format.extent5 p.
dc.format.mimetypeapplication/pdfen
dc.identifier.doi10.1145/3379156.3391368
dc.identifier.isbn978-1-4503-7134-6
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/39351
dc.language.isoengen
dc.publisherAssociation for Computing Machinery (ACM)en
dc.relation.ispartofETRA'20 Short Papers: ACM Symposium on Eye Tracking Research and Applications, 2020:16en
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/TIN2016-84388-R/
dc.relation.publisherversionhttps://doi.org/10.1145/3379156.3391368
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subjectNeural networksen
dc.subjectDatasets gaze estimationen
dc.titleGaze estimation problem tackled through synthetic imagesen
dc.typeinfo:eu-repo/semantics/conferenceObject
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublicatione764f502-1d84-436f-81cd-97bfbe0240f4
relation.isAuthorOfPublication7d67c732-213a-47e0-82f8-81a897144cfa
relation.isAuthorOfPublication45f0a653-c7ac-4322-80c3-735e9988330b
relation.isAuthorOfPublication42fe20f8-5341-4c0e-8686-333ce816adfd
relation.isAuthorOfPublication8f4eb99d-97ce-4dc9-b13a-18fcd2ab44e6
relation.isAuthorOfPublicationd3bfd5bf-8426-455b-bcc4-897ddb0d4c2e
relation.isAuthorOfPublication.latestForDiscoverye764f502-1d84-436f-81cd-97bfbe0240f4

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
2020101204_Garde_GazeEstimation.pdf
Size:
229.73 KB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: