Publication: Microglia and astrocyte activation is region-dependent in the α-synuclein mouse model of Parkinson's disease
Date
Authors
Director
Publisher
Project identifier
ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020 (ISCIII)/PI20%2F01063/ES/
ISCIII/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016 (ISCIII)/PI18%2F00556/ES/
Gobierno de Navarra//PC060-061
Gobierno de Navarra//PC192-193
Abstract
Inflammation is a common feature in neurodegenerative diseases that contributes to neuronal loss. Previously, we demonstrated that the basal inflammatory tone differed between brain regions and, consequently, the reaction generated to a pro-inflammatory stimulus was different. In this study, we assessed the innate immune reaction in the midbrain and in the striatum using an experimental model of Parkinson's disease. An adeno-associated virus serotype 9 expressing the alpha-synuclein and mCherry genes or the mCherry gene was administered into the substantia nigra. Myeloid cells (CD11b(+)) and astrocytes (ACSA2(+)) were purified from the midbrain and striatum for bulk RNA sequencing. In the parkinsonian midbrain, CD11b(+) cells presented a unique anti-inflammatory transcriptomic profile that differed from degenerative microglia signatures described in experimental models for other neurodegenerative conditions. By contrast, striatal CD11b(+) cells showed a pro-inflammatory state and were similar to disease-associated microglia. In the midbrain, a prominent increase of infiltrated monocytes/macrophages was observed and, together with microglia, participated actively in the phagocytosis of dopaminergic neuronal bodies. Although striatal microglia presented a phagocytic transcriptomic profile, morphology and cell density was preserved and no active phagocytosis was detected. Interestingly, astrocytes presented a pro-inflammatory fingerprint in the midbrain and a low number of differentially displayed transcripts in the striatum. During alpha-synuclein-dependent degeneration, microglia and astrocytes experience context-dependent activation states with a different contribution to the inflammatory reaction. Our results point towards the relevance of selecting appropriate cell targets to design neuroprotective strategies aimed to modulate the innate immune system during the active phase of dopaminergic degeneration.
Description
Keywords
Department
Faculty/School
Degree
Doctorate program
item.page.cita
item.page.rights
© 2022 The Authors. GLIA published by Wiley Periodicals LLC. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License.
Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.