Publication:
Uniqueness of unconditional basis of Hp(T) ⊕ 2 and Hp(T) ⊕ T (2) for 0 < p < 1

Date

2022

Authors

Ansorena, José L.
Wojtaszczyk, Przemyslaw

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/recolecta
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/recolecta
Métricas Alternativas

Abstract

Our goal in this paper is to advance the state of the art of the topic of uniqueness of unconditional basis. To that end we establish general conditions on a pair (X, Y) formed by a quasi-Banach space X and a Banach space Y which guarantee that every unconditional basis of their direct sum X ⊕ Y splits into unconditional bases of each summand. As application of our methods we obtain that, among others, the spaces Hp(Td) ⊕ T (2) and Hp(Td) ⊕ 2, for p ∈ (0, 1) and d ∈ N, have a unique unconditional basis (up to equivalence and permutation).

Description

Keywords

Hardy spaces, Lattice techniques in quasi-Banach spaces, Tsirelson space, Uniqueness of unconditional basis

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

Albiac, F., Ansorena, J. L., & Wojtaszczyk, P. (2022). Uniqueness of unconditional basis of H p (T) ⊕ ℓ 2 and H p ⊕(T) T for(2) 0 < p < 1. Journal of Functional Analysis, 283(7), 109597.

item.page.rights

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.