On the permutative equivalence of squares of unconditional bases

Date

2022

Authors

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/ recolecta
Impacto
OpenAlexGoogle Scholar
No disponible en Scopus

Abstract

We prove that if the squares of two unconditional bases are equivalent up to a permutation, then the bases themselves are permutatively equivalent. This settles a twenty-five year-old question raised by Casazza and Kalton in [13]. Solving this problem provides a new paradigm to study the uniqueness of unconditional basis in the general framework of quasi-Banach spaces. Multiple examples are given to illustrate how to put in practice this theoretical scheme. Among the main applications of this principle we obtain the uniqueness of unconditional basis up to permutation of finite sums of spaces with this property, as well as the first addition to the scant list of the known Banach spaces with a unique unconditional bases up to permutation since [14].

Description

Keywords

Banach lattice, Quasi-Banach spaces, Uniqueness of unconditional basis

Department

Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2 / Estadística, Informática y Matemáticas

Faculty/School

Degree

Doctorate program

item.page.cita

Albiac, F., & Ansorena, J. L. (2022). On the permutative equivalence of squares of unconditional bases. Advances in Mathematics, 410, 108695. https://doi.org/10.1016/j.aim.2022.108695

item.page.rights

© 2022 The Author(s). This is an open access article under the CC BY-NC-ND license

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.