Kinematic design of a new four degree-of-freedom parallel robot for knee rehabilitation

Date

2018

Director

Publisher

ASME
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

  • MINECO//DPI2013-44227-R/ES/ recolecta
  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/DPI2017-84201-R/ES/ recolecta
Impacto

Abstract

Rehabilitation robots are increasingly being developed in order to be used by injured people to perform exercise and training. As these exercises do not need wide range movements, some parallel robots with lower mobility architecture can be an ideal solution for this purpose. This paper presents the design of a new four degree-of-freedom (DOF) parallel robot for knee rehabilitation. The required four DOFs are two translations in a vertical plane and two rotations, one of them around an axis perpendicular to the vertical plane and the other one with respect to a vector normal to the instantaneous orientation of the mobile platform. These four DOFs are reached by means of two RPRR limbs and two UPS limbs linked to an articulated mobile platform with an internal DOF. Kinematics of the new mechanism are solved and the direct Jacobian is calculated. A singularity analysis is carried out and the gained DOFs of the direct singularities are calculated. Some of the singularities can be avoided by selecting suitable values of the geometric parameters of the robot. Moreover, among the found singularities, one of them can be used in order to fold up the mechanism for its transportation. It is concluded that the proposed mechanism reaches the desired output movements in order to carry out rehabilitation maneuvers in a singularity-free portion of its workspace.

Description

Keywords

Mechanism theory, Parallel robots, Robot design, Robot kinematics

Department

Ingeniería Mecánica, Energética y de Materiales / Mekanika, Energetika eta Materialen Ingeniaritza / Institute of Smart Cities - ISC

Faculty/School

Degree

Doctorate program

item.page.cita

Aginaga, J., Iriarte, X., Plaza, A., & Mata, V. (2018). Kinematic design of a new four degree-of-freedom parallel robot for knee rehabilitation. Journal of Mechanical Design, 140(9), 092304. https://doi.org/10.1115/1.4040168

item.page.rights

© 2018 by ASME. Creative Commons BY 4.0 DEED Attribution 4.0 International.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.