A scalable approach for short-term disease forecasting in high spatial resolution areal data

Date

2023

Director

Publisher

Wiley-VCH
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-113125RB-I00/ES/ recolecta
Impacto
No disponible en Scopus

Abstract

Short-term disease forecasting at specific discrete spatial resolutions has become a high-impact decision-support tool in health planning. However, when the number of areas is very large obtaining predictions can be computationally intensive or even unfeasible using standard spatiotemporal models. The purpose of this paper is to provide a method for short-term predictions in high-dimensional areal data based on a newly proposed ¿divide-and-conquer¿ approach. We assess the predictive performance of this method and other classical spatiotemporal models in a validation study that uses cancer mortality data for the 7907 municipalities of continental Spain. The new proposal outperforms traditional models in terms of mean absolute error, root mean square error, and interval score when forecasting cancer mortality 1, 2, and 3 years ahead. Models are implemented in a fully Bayesian framework using the well-known integrated nested Laplace estimation technique.

Description

Keywords

cancer projections, disease mapping, high-dimensional data, integrated nested Laplace approximation

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika / Institute for Advanced Materials and Mathematics - INAMAT2

Faculty/School

Degree

Doctorate program

item.page.cita

Orozco-Acosta, E., Riebler, A., Adin, A., Ugarte, M. D. (2023) A scalable approach for short-term disease forecasting in high spatial resolution areal data. Biometrical Journal, 65(8), 1-8. https://doi.org/10.1002/bimj.202300096.

item.page.rights

© 2023 The Authors. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.