Barrios Rípodas, Ernesto
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Barrios Rípodas
First Name
Ernesto
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
27 results
Search Results
Now showing 1 - 10 of 27
Publication Open Access Winding resistance measurement in power inductors - understanding the impact of the winding mutual resistance(IEEE, 2021) Barrios Rípodas, Ernesto; Elizondo Martínez, David; Ursúa Rubio, Alfredo; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenInductors are cornerstone components in power electronics converters. Since winding loss is the dominant loss mechanism in these components, its accurate measurement is fundamental for the validation of the inductor's operation and design. The techniques for the winding resistance R_{w} measurement in power inductors can be classified into two groups, indirect and direct. Both techniques use coupled inductors to separate winding and core power losses. If coupled inductors with non-zero winding mutual resistances R_{w,m} are used, invalid results are obtained with these techniques. Understanding the meaning of R_{w,m} in coupled inductors is complex. In this paper, the impact of R_{w,m} on the inductor R_{w} measurement techniques is demonstrated and practical guidelines for the design of the zero R_{w,m} coupled inductors are given. Particularly, the location of the auxiliary winding for the direct technique is investigated. In order to compare the R_{w} measurement techniques and to validate the coupled inductor's R_{w,m} impact, two different inductors are built and tested. The results are compared with the values for R_{w} calculated by FEA simulation. It is found that only the direct technique with an auxiliary winding carefully designed and located following the guidelines given in this paper makes the accurate measurement of R_{w} in power inductors possible.Publication Open Access High frequency power transformers with foil windings: maximum interleaving and optimal design(IEEE, 2015) Barrios Rípodas, Ernesto; Urtasun Erburu, Andoni; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFoil conductors and primary and secondary interleaving are normally used to minimize winding losses in high frequency transformers used for high-current power applications. However, winding interleaving complicates the transformer assembly, since taps are required to connect the winding sections, and also complicates the transformer design, since it introduces a new tradeoff between minimizing losses and reducing the construction difficulty. This paper presents a novel interleaving technique, named maximum interleaving, that makes it possible to minimize the winding losses as well as the construction difficulty. An analytical design methodology is also proposed in order to obtain free cooled transformers with a high efficiency, low volume and, therefore, a high power density. For the purpose of evaluating the advantages of the proposed maximum interleaving technique, the methodology is applied to design a transformer positioned in the 5 kW 50 kHz intermediate high frequency resonant stage of a commercial PV inverter. The proposed design achieves a transformer power density of 28 W/cm3 with an efficiency of 99.8%. Finally, a prototype of the maximum-interleaved transformer is assembled and validated satisfactorily through experimental tests.Publication Open Access Control design and stability analysis of power converters: the discrete generalized Bode criterion(IEEE, 2021) Urtasun Erburu, Andoni; Samanes Pascual, Javier; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenFor the controller design and stability analysis of power electronic converters, the Bode stability criterion and its subsequent revisions are the most practical tools. However, even though the control of the power converter is usually implemented in a microprocessor, none of these methods is infallible when applied to a discrete system. This article therefore proposes a new stability criterion, named the Discrete Generalized Bode Criterion (DGBC). This method is based on the Nyquist criterion but developed from the open-loop Bode diagram, evaluated also at 0 Hz and at the Nyquist frequency. The proposed criterion combines the advantages of the Nyquist and Bode criteria, since it is always applicable and provides an interesting and useful tool for the controller design process. The method is applied to design an active damping control of an inverter with LCL filter, showing how the proposed criterion accurately predicts stability, in contrast to the existing Bode criteria. The theoretical analysis is validated through experimental results performed with a three-phase inverter and an LCL filter.Publication Open Access Dynamic modeling of a pressurized alkaline water electrolyzer: a multiphysics approach(IEEE, 2023) Iribarren Zabalegui, Álvaro; Elizondo Martínez, David; Barrios Rípodas, Ernesto; Ibaiondo, Harkaitz; Sánchez Ruiz, Alain; Arza, Joseba; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio IngeniaritzarenIn this paper a dynamic model for the simulation of pressurized alkaline water electrolyzers is presented. The model has been developed following a multiphysics approach, integrating electrochemical, thermodynamic, heat transfer and gas evolution processes in order to faithfully reproduce the complete dynamical behavior of these systems. The model has been implemented on MATLAB/Simulink and validated through experimental data from a 1 Nm3/h commercial alkaline water electrolyzer. Validations have been performed under real scenarios where the electrolyzer is working with power profiles characteristic from renewable sources, wind and photovoltaic. The simulated results have been found to be consistent with the real measured values. This model has a great potential to predict the behavior of alkaline water electrolyzers coupled with renewable energy sources, making it a very useful tool for designing efficient green hydrogen production systems.Publication Open Access Novel three-phase topology for cascaded multilevel medium-voltage conversion systems in large-scale PV plants(IEEE, 2020) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Balda Belzunegui, Julián; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónSolar photovoltaic renewable energy systems are expanding in the power sector thanks to its increasingly competitive prices. Traditionally, large-scale PV plants have reduced their cost by increasing the power ratings of the inverters and the line-frequency transformers. However, cost-reduction limits of large-scale PV plants are being reached. Cascaded converters have appeared as a solution to continue reducing the cost of large PV plants as they reduce the wiring cost. In this paper, a novel three-phase topology for cascaded conversion structures is proposed. It only has 2 conversion steps, one without switching losses. Hence, it increases the efficiency and reduces the cost of the previously proposed cascaded conversion systems. The topology is patent pending.Publication Open Access Zero-loss switching in DC-DC series resonant converters under discontinuous conduction mode(IEEE, 2021) Elizondo Martínez, David; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaMany thriving applications where isolation is required, such as traction and EV fast charging, implement solid-state transformers (SST). Half-cycle discontinuous-conduction-mode series resonant converters (HC-DCM-SRC) are suitable for these applications. The focus of this paper is to perform a comprehensive approach to HC-DCM-SRC and provide straight-forward requirements in order to ensure zero-loss switching (ZLS) of semiconductors. In addition, these requirements can be expressed as design boundaries for the transformer. Finally, the paper shows that, due to ZLS, silicon devices may have larger power capability than silicon-carbide switches. Therefore, IGBTs can be used instead of SiC MOSFETs, resulting in a significant cost reduction of the converter.Publication Open Access Active control for medium-frequency transformers flux-balancing in a novel three-phase topology for cascaded conversion structures(IEEE, 2020) Lumbreras Magallón, David; Barrios Rípodas, Ernesto; Navarrete, Manuel; Balda Belzunegui, Julián; González Senosiain, Roberto; Sanchis Gúrpide, Pablo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaEfficiency and power density are important parameters in the design of power electronics converters. In many applications, low-frequency transformers are being substituted for medium-frequency and high-frequency transformers in order to reduce the volume and therefore the cost of the transformer. However, preventing their saturation is a complex task. This paper studies the medium-frequency transformers' flux balancing in a novel three-phase topology for cascaded conversion structures.Based on the modulation technique of the converter, a method to directly measure the magnetizing current of the medium-frequency transformers is proposed in this paper. A control loop to regulate the dc value of the magnetizing current is also designed and developed. Simulation results validate the correct operation of the control loop, which prevents the transformer saturation.Publication Open Access Hydrogen educational activities developed by APERNA: a renewable-energy student association(Asociación Española del Hidrógeno, 2016) Berrueta Irigoyen, Alberto; San Martín Biurrun, Idoia; Samanes Pascual, Javier; Pascual Miqueleiz, Julio María; Barrios Rípodas, Ernesto; Parra Laita, Íñigo de la; Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de ComunicaciónIn this paper, we present APERNA, a recently-created student association at Public University of Navarre (UPNA) with the aim of promotion of renewable energies.Publication Open Access Analytical design methodology for Litz-wired high-frequency power transformers(IEEE, 2015) Barrios Rípodas, Ernesto; Ursúa Rubio, Alfredo; Marroyo Palomo, Luis; Sanchis Gúrpide, Pablo; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn the last quarter of a century, high-frequency (HF) transformer design has been one of the major concerns to power electronics designers in order to increase converter power densities and efficiencies. Conventional design methodologies are based on iterative processes and rules of thumb founded more on expertise than on theoretical developments. This paper presents an analytical design methodology for litz-wired HF power transformers that provides a deep insight into the transformer design problem making it a powerful tool for converter designers. The most suitable models for the calculation of core and winding losses and the transformer thermal resistance are first selected and then validated with a 5-kW 50-kHz commercial transformer for a photovoltaic application. Based on these models, the design methodology is finally proposed, reducing the design issue to directly solve a five-variable nonlinear optimization problem. The methodology is illustrated with a detailed design in terms of magnetic material, core geometry, and primary and secondary litz-wire sizing. The optimal design achieves a 46.5% power density increase and a higher efficiency of 99.70% when compared with the commercial one.Publication Open Access Modeling and optimal sizing of thyristor rectifiers for high-power hydrogen electrolyzers(IEEE, 2025-05-01) Iribarren Zabalegui, Álvaro; Barrios Rípodas, Ernesto; Sanchis Gúrpide, Pablo; Ursúa Rubio, Alfredo; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThyristor rectifiers are currently the most common solution for supplying high-power electrolyzers. These rectifiers typically include a dc inductance, which significantly increases system costs. However, this inductance can be avoided by relying solely on ac-side inductances, required for grid current harmonic filtering, although this approach introduces specific challenges. Traditional analytical models of thyristor rectifiers are unable to determine the electrolyzer operating point for a given firing angle and may lead to incorrect system sizing, ultimately preventing the converter from delivering nominal power. This limitation arises from the fact that existing models are formulated for inductive or constant-current loads, whereas electrolyzers exhibit electrical behavior closer to constant-voltage loads. In this paper, a novel analytical model of 6- and 12-pulse thyristor rectifiers with constant-voltage load is developed. The model enables the analysis and optimal sizing of thyristor rectifiers directly connected to electrolyzers without a dc-side inductance. Its accuracy has been validated through both simulations and experimentally using a laboratory-scale prototype. Furthermore, the model has been applied to optimally size a 12-pulse rectifier supplying a 5.5 MW electrolyzer, demonstrating its suitability for the design of thyristor rectifier systems in industrial-scale electrolysis applications and highlighting its advantages over traditional approaches.
- «
- 1 (current)
- 2
- 3
- »