Publication:
Study on isolation improvement between closely-packed patch antenna arrays based on fractal metamaterial electromagnetic bandgap structures

Consultable a partir de

Date

2018

Authors

Alibakhshikenari, Mohammad
Virdee, Bal S.
See, Chan H.
Abd-Alhameed, Raed
Ali, Abdul
Hussein Ali, Ammar
Limiti, Ernesto

Director

Publisher

Institution of Engineering and Technology
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

European Commission/Horizon 2020 Framework Programme/722424openaire

Abstract

A decoupling metamaterial (MTM) configuration based on fractal electromagnetic-bandgap (EMBG) structure is shown to significantly enhance isolation between transmitting and receiving antenna elements in a closely-packed patch antenna array. The MTM-EMBG structure is cross-shaped assembly with fractal-shaped slots etched in each arm of the cross. The fractals are composed of four interconnected-'Y-shaped' slots that are separated with an inverted-'T-shaped' slot. The MTM-EMBG structure is placed between the individual patch antennas in a 2 × 2 antenna array. Measured results show the average inter-element isolation improvement in the frequency band of interest is 17, 37 and 17 dB between radiation elements #1 & #2, #1 & #3, and #1 & #4, respectively. With the proposed method there is no need for using metallic-via-holes. The proposed array covers the frequency range of 8-9.25 GHz for X-band applications, which corresponds to a fractional-bandwidth of 14.5%. With the proposed method the edge-to-edge gap between adjacent antenna elements can be reduced to 0.5λ0 with no degradation in the antenna array's radiation gain pattern. Across the array's operating band, the measured gain varies between 4 and 7 dBi, and the radiation efficiency varies from 74.22 and 88.71%. The proposed method is applicable in the implementation of closely-packed patch antenna arrays used in SAR and MIMO systems. © 2018, The Institution of Engineering and Technology.

Keywords

Fractal, Mutual coupling, Isolation enhancement, Planar antennas, Electromagnetic bandgap (EMBG), Metamaterial (MTM), Multiple-input-multiple-output (MIMO), Synthetic aperture radar (SAR)

Department

Ingeniería Eléctrica, Electrónica y de Comunicación / Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren

Faculty/School

Degree

Doctorate program

Editor version

Funding entities

This work was partially supported by innovation programme under grant agreement H2020-MSCA-ITN-2016 SECRET-722424 and the financial support from the UK Engineering and Physical Sciences Research Council (EPSRC) under grant EP/E022936/1.

© The Institution of Engineering and Technology

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.