Mostrar el registro sencillo del ítem

dc.creatorPérez Escudero, José Manueles_ES
dc.creatorBuldain, Ibanes_ES
dc.creatorBeruete Díaz, Migueles_ES
dc.creatorGoicoechea Fernández, Javieres_ES
dc.creatorLiberal Olleta, Íñigoes_ES
dc.date.accessioned2021-06-14T11:17:33Z
dc.date.available2021-06-14T11:17:33Z
dc.date.issued2020
dc.identifier.issn1094-4087
dc.identifier.urihttps://hdl.handle.net/2454/39904
dc.description.abstractThe absorption of infrared radiation within ultra-thin metallic films is technologically relevant for different thermal engineering applications and optoelectronic devices, as well as for fundamental research on sub-nanometer and atomically-thin materials. However, the maximal attainable absorption within an ultra-thin metallic film is intrinsically limited by both its geometry and material properties. Here, we demonstrate that material-based high-impedance surfaces enhance the absorptivity of the films, potentially leading to perfect absorption for optimal resistive layers, and a fourfold enhancement for films at deep nanometer scales. Moreover, material-based high-impedance surfaces do not suffer from spatial dispersion and the geometrical restrictions of their metamaterial counterparts. We provide a proof-of-concept experimental demonstration by using titanium nanofilms on top of a silicon carbide substrate.en
dc.description.sponsorshipHorizon 2020 Framework Programme (ATTRACT ENZSICSENS); Ministerio de Ciencia, Innovación y Universidades (RTI2018-093714-301 J-I00, RYC2018-024123-I).en
dc.format.extent13 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherOptical Society of Americaen
dc.relation.ispartofOptics Express, 28 (21), 31624-31636en
dc.rights© 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement. Users may use, reuse, and build upon the article, or use the article for text or data mining, so long as such uses are for non-commercial purposes and appropriate attribution is maintained. All other rights are reserved.en
dc.subjectUltra-thin metallic filmsen
dc.subjectAbsorptivityen
dc.subjectSilicon carbide substratesen
dc.subjectInfrarred radiationen
dc.subjectMaterial-based high-impedance surfacesen
dc.titleSilicon carbide as a material-based high-impedance surface for enhanced absorption within ultra-thin metallic filmsen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentInstitute of Smart Cities - ISCen
dc.contributor.departmentIngeniería Eléctrica, Electrónica y de Comunicaciónes_ES
dc.contributor.departmentIngeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritzaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.1364/OE.402397
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-093714-J-I00/ES/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/MICIU/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RYC2018-024123-Ien
dc.relation.publisherversionhttps://doi.org/10.1364/OE.402397
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem


El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt