Show simple item record

dc.creatorAlbiac Alesanco, Fernando Josées_ES
dc.creatorAnsorena, José L.es_ES
dc.creatorWojtaszczyk, Przemyslawes_ES
dc.date.accessioned2022-11-30T08:09:38Z
dc.date.available2022-11-30T08:09:38Z
dc.date.issued2022
dc.identifier.citationAlbiac, F., Ansorena, J. L., & Wojtaszczyk, P. (2022). Uniqueness of unconditional basis of H p (T) ⊕ ℓ 2 and H p ⊕(T) T for(2) 0 < p < 1. Journal of Functional Analysis, 283(7), 109597.en
dc.identifier.issn0022-1236
dc.identifier.urihttps://hdl.handle.net/2454/44396
dc.description.abstractOur goal in this paper is to advance the state of the art of the topic of uniqueness of unconditional basis. To that end we establish general conditions on a pair (X, Y) formed by a quasi-Banach space X and a Banach space Y which guarantee that every unconditional basis of their direct sum X ⊕ Y splits into unconditional bases of each summand. As application of our methods we obtain that, among others, the spaces Hp(Td) ⊕ T (2) and Hp(Td) ⊕ 2, for p ∈ (0, 1) and d ∈ N, have a unique unconditional basis (up to equivalence and permutation).en
dc.description.sponsorshipF. Albiac acknowledges the support of the Spanish Ministry for Science and Innovation under Grant PID2019-107701GB-I00 for Operators, lattices, and structure of Banach spaces. F. Albiac and J. L. Ansorena acknowledge the support of the Spanish Ministry for Science, Innovation, and Universities under Grant PGC2018-095366-B-I00 for Análisis Vectorial, Multilineal y Aproximación. P. Wojtaszczyk was supported by National Science Centre, Poland grant UMO-2016/21/B/ST1/00241.en
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherElsevieren
dc.relation.ispartofJournal of Functional Analysis 283 (2022) 109597en
dc.rights© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND licenseen
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectHardy spacesen
dc.subjectLattice techniques in quasi-Banach spacesen
dc.subjectTsirelson spaceen
dc.subjectUniqueness of unconditional basisen
dc.titleUniqueness of unconditional basis of Hp(T) ⊕ 2 and Hp(T) ⊕ T (2) for 0 < p < 1en
dc.typeArtículo / Artikuluaes
dc.typeinfo:eu-repo/semantics/articleen
dc.date.updated2022-11-18T12:22:19Z
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.contributor.departmentInstitute for Advanced Materials and Mathematics - INAMAT2es_ES
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.identifier.doi10.1016/j.jfa.2022.109597
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107701GB-I00/ES/en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PGC2018-095366-B-I00/ES/en
dc.relation.publisherversionhttps://doi.org/10.1016/j.jfa.2022.109597
dc.type.versionVersión publicada / Argitaratu den bertsioaes
dc.type.versioninfo:eu-repo/semantics/publishedVersionen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
Except where otherwise noted, this item's license is described as © 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt