Applications of sensing for disease detection
Date
2021Author
Version
Acceso abierto / Sarbide irekia
Type
Capítulo de libro / Liburuen kapitulua
Version
Versión aceptada / Onetsi den bertsioa
Project Identifier
Impact
|
10.1007/978-3-030-78431-7_13
Abstract
The potential loss of world crop production from the effect of pests,
including weeds, animal pests, pathogens and viruses has been quantifed as around
40%. In addition to the economic threat, plant diseases could have disastrous consequences for the environment. Accurate and timely disease detection requires the use
of rapid and reliable techniques capable of identifying infected plants and p ...
[++]
The potential loss of world crop production from the effect of pests,
including weeds, animal pests, pathogens and viruses has been quantifed as around
40%. In addition to the economic threat, plant diseases could have disastrous consequences for the environment. Accurate and timely disease detection requires the use
of rapid and reliable techniques capable of identifying infected plants and providing the tools required to implement precision agriculture strategies. The combination of
suitable remote sensing (RS) data and advanced analysis algorithms makes it possible to develop prescription maps for precision disease control. This chapter shows
some case studies on the use of remote sensing technology in some of the world’s
major crops; namely cotton, avocado and grapevines. In these case studies, RS has
been applied to detect disease caused by fungi using different acquisition platforms
at different scales, such as leaf-level hyperspectral data and canopy-level remote
imagery taken from satellites, manned airplanes or helicopter, and UAVs. The
results proved that remote sensing is useful, effcient and effective for identifying
cotton root rot zones in cotton felds, laurel wilt-infested avocado trees and escaaffected vines, which would allow farmers to optimize inputs and feld operations,
resulting in reduced yield losses and increased profts. [--]
Subject
Crop disease,
Image analysis,
Spectral analysis,
Multispectral
imaging,
Hyperspectral imaging,
Prescription map
Publisher
Springer
Published in
Kerry, R.; Escolà, A. (Eds.). Sensing approaches for precision agricultura. Cham: Springer; 2021. p.369-398 978-3-030-78431-7
Departament
Universidad Pública de Navarra. Departamento de Agronomía, Biotecnología y Alimentación /
Nafarroako Unibertsitate Publikoa. Agronomia, Bioteknologia eta Elikadura Saila /
Universidad Pública de Navarra. Departamento de Estadística, Informática y Matemáticas /
Nafarroako Unibertsitate Publikoa. Estatistika, Informatika eta Matematika Saila /
Universidad Pública de Navarra. Departamento de Ingeniería /
Nafarroako Unibertsitate Publikoa. Ingeniaritza Saila
Publisher version
Sponsorship
The research presented here was partly financed by the USDA Specialty
Block Grant No. 019730 (Florida Department of Agriculture and Consumer Services, USA),
AGL2017-83325-C4-1R and AGL2017-83325-C4-4R Projects (Spanish Ministry of Science,
Innovation and Universities and AEI/EU-FEDER funds), Public University of Navarre postgraduate scholarships (FPI-UPNA-2017, Res.654/2017), Project DECIVID (Res.104E/2017,
Department of Economic Development of the Navarre Government-Spain), and the Spanish
MINECO project TIN2016-77356-P (AEI, Feder/UE).
Appears in Collections
- Libros y capítulos de libros DABA - ABES Liburuak eta liburuen kapituluak [2]
- Libros y capítulos de libros DEIM - EIMS Liburuak eta liburuen kapituluak [9]
- Libros y capítulos de libros DING - INGS Liburuak eta liburuen kapituluak [5]
- Libros y capítulos de libros - Liburuak eta liburuen kapituluak [134]