Show simple item record

dc.creatorFerreira, Cheloes_ES
dc.creatorLópez García, José Luises_ES
dc.creatorPérez Sinusía, Esteres_ES
dc.date.accessioned2018-12-14T12:04:12Z
dc.date.available2018-12-14T12:04:12Z
dc.date.issued2016
dc.identifier.issn0176-4276 (Print)
dc.identifier.issn1432-0940 (Electronic)
dc.identifier.urihttps://hdl.handle.net/2454/31770
dc.descriptionThis is a post-peer-review, pre-copyedit version of an article published in Constructive Approximation. The final authenticated version is available online at: https://doi.org/10.1007/s00365-015-9298-yen
dc.description.abstractWe consider the asymptotic method designed by Olver (Asymptotics and special functions. Academic Press, New York, 1974) for linear differential equations of the second order containing a large (asymptotic) parameter : xm y −2 y = g(x)y, with m ∈ Z and g continuous. Olver studies in detail the cases m = 2, especially the cases m = 0, ±1, giving the Poincaré-type asymptotic expansions of two independent solutions of the equation. The case m = 2 is different, as the behavior of the solutions for large is not of exponential type, but of power type. In this case, Olver’s theory does not give many details. We consider here the special case m = 2. We propose two different techniques to handle the problem: (1) a modification of Olver’s method that replaces the role of the exponential approximations by power approximations, and (2) the transformation of the differential problem into a fixed point problem from which we construct an asymptotic sequence of functions that converges to the unique solution of the problem. Moreover, we show that this second technique may also be applied to nonlinear differential equations with a large parameter.en
dc.description.sponsorshipThe Dirección General de Ciencia y Tecnología (REF.MTM2014-52859) is acknowledged for its financial support.en
dc.format.extent18 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherSpringer USen
dc.relation.ispartofConstructive Approximation (2016) 43:273–290en
dc.rights© Springer Science+Business Media New York 2015en
dc.subjectSecond-order differential equationsen
dc.subjectAsymptotic expansionsen
dc.subjectGreen’s functionsen
dc.subjectBanach’s fixed point theoremen
dc.titleOn a modifcation of Olver's method: a special caseen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentUniversidad Pública de Navarra. Departamento de Ingeniería Matemática e Informáticaes_ES
dc.contributor.departmentNafarroako Unibertsitate Publikoa. Matematika eta Informatika Ingeniaritza Sailaeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.1007/s00365-015-9298-y
dc.relation.projectIDinfo:eu-repo/grantAgreement/ES/1PE/MTM2014-52859
dc.relation.publisherversionhttps://doi.org/10.1007/s00365-015-9298-yen
dc.type.versioninfo:eu-repo/semantics/acceptedVersionen
dc.type.versionVersión aceptada / Onetsi den bertsioaes


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record