Mostrar el registro sencillo del ítem

dc.creatorTorres Peralta, Rafaeles_ES
dc.creatorMorales Alamo, Davides_ES
dc.creatorGonzález Izal, Miriames_ES
dc.creatorLosa Reyna, Josées_ES
dc.creatorIzquierdo Redín, Mikeles_ES
dc.date.accessioned2020-10-02T11:57:06Z
dc.date.available2020-10-02T11:57:06Z
dc.date.issued2016
dc.identifier.issn1664-042X
dc.identifier.urihttps://hdl.handle.net/2454/38314
dc.description.abstractTo determine whether task failure during incremental exercise to exhaustion (IE) is principally due to reduced neural drive and increased metaboreflex activation eleven men (22 ± 2 years) performed a 10 s control isokinetic sprint (IS; 80 rpm) after a short warm-up. This was immediately followed by an IE in normoxia (Nx, PIO2:143 mmHg) and hypoxia (Hyp, PIO2:73 mmHg) in random order, separated by a 120 min resting period. At exhaustion, the circulation of both legs was occluded instantaneously (300 mmHg) during 10 or 60 s to impede recovery and increase metaboreflex activation. This was immediately followed by an IS with open circulation. Electromyographic recordings were obtained from the vastus medialis and lateralis. Muscle biopsies and blood gases were obtained in separate experiments. During the last 10 s of the IE, pulmonary ventilation, VO2, power output and muscle activation were lower in hypoxia than in normoxia, while pedaling rate was similar. Compared to the control sprint, performance (IS-Wpeak) was reduced to a greater extent after the IE-Nx (11% lower P < 0.05) than IE-Hyp. The root mean square (EMGRMS) was reduced by 38 and 27% during IS performed after IE-Nx and IE-Hyp, respectively (Nx vs. Hyp: P < 0.05). Post-ischemia IS-EMGRMS values were higher than during the last 10 s of IE. Sprint exercise mean (IS-MPF) and median (IS-MdPF) power frequencies, and burst duration, were more reduced after IE-Nx than IE-Hyp (P < 0.05). Despite increased muscle lactate accumulation, acidification, and metaboreflex activation from 10 to 60 s of ischemia, IS-Wmean (+23%) and burst duration (+10%) increased, while IS-EMGRMS decreased (−24%, P < 0.05), with IS-MPF and IS-MdPF remaining unchanged. In conclusion, close to task failure, muscle activation is lower in hypoxia than in normoxia. Task failure is predominantly caused by central mechanisms, which recover to great extent within 1 min even when the legs remain ischemic. There is dissociation between the recovery of EMGRMS and performance. The reduction of surface electromyogram MPF, MdPF and burst duration due to fatigue is associated but not caused by muscle acidification and lactate accumulation. Despite metaboreflex stimulation, muscle activation and power output recovers partly in ischemia indicating that metaboreflex activation has a minor impact on sprint performance.en
dc.description.sponsorshipThis study was supported by a grant from the Ministerio de Educación y Ciencia of Spain (DEP2009-11638 and FEDER) and VII Convocatoria de Ayudas a la Investigación Cátedra Real Madrid-Universidad Europea de Madrid (2015/04RM).en
dc.format.extent15 p.
dc.format.mimetypeapplication/pdfen
dc.language.isoengen
dc.publisherFrontiersen
dc.relation.ispartofFrontiers in Physiology, 2016, 6, 414en
dc.rights© 2016 Torres-Peralta, Morales-Alamo, González-Izal, Losa-Reyna, Pérez-Suárez, Izquierdo and Calbet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CCBY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice.No use, distribution or reproduction is permitted which does not comply with these terms.en
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectElectromyographyen
dc.subjectEMGen
dc.subjectExhaustionen
dc.subjectFatigueen
dc.subjectHigh-intensityen
dc.subjectHypoxiaen
dc.subjectLactateen
dc.subjectPerformanceen
dc.titleTask failure during exercise to exhaustion in normoxia and hypoxia is due to reduced muscle activation caused by central mechanisms while muscle metaboreflex does not limit performanceen
dc.typeinfo:eu-repo/semantics/articleen
dc.typeArtículo / Artikuluaes
dc.contributor.departmentCiencias de la Saludes_ES
dc.contributor.departmentOsasun Zientziakeu
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessen
dc.rights.accessRightsAcceso abierto / Sarbide irekiaes
dc.identifier.doi10.3389/fphys.2015.00414
dc.relation.publisherversionhttps://doi.org/10.3389/fphys.2015.00414
dc.type.versioninfo:eu-repo/semantics/publishedVersionen
dc.type.versionVersión publicada / Argitaratu den bertsioaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© 2016 Torres-Peralta, Morales-Alamo, González-Izal, Losa-Reyna, Pérez-Suárez, Izquierdo and Calbet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CCBY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice.No use, distribution or reproduction is permitted which does not comply with these terms.
La licencia del ítem se describe como © 2016 Torres-Peralta, Morales-Alamo, González-Izal, Losa-Reyna, Pérez-Suárez, Izquierdo and Calbet. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CCBY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice.No use, distribution or reproduction is permitted which does not comply with these terms.

El Repositorio ha recibido la ayuda de la Fundación Española para la Ciencia y la Tecnología para la realización de actividades en el ámbito del fomento de la investigación científica de excelencia, en la Línea 2. Repositorios institucionales (convocatoria 2020-2021).
Logo MinisterioLogo Fecyt