Comunicaciones y ponencias de congresos DING - INGS Biltzarretako komunikazioak eta txostenak
Permanent URI for this collection
Browse
Browsing Comunicaciones y ponencias de congresos DING - INGS Biltzarretako komunikazioak eta txostenak by Department/Institute "Institute for Advanced Materials and Mathematics - INAMAT2"
Now showing 1 - 5 of 5
Results Per Page
Sort Options
Publication Open Access An optical fiber sensor for Hg2+ detection based on the LSPR of silver and gold nanoparticles embedded in a polymeric matrix as an effective sensing material(MDPI, 2021-07-07) Martínez Hernández, María Elena; Sandúa Fernández, Xabier; Rivero Fuente, Pedro J.; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this work, an optical fiber sensor based on the localized surface plasmon resonance (LSPR) phenomenon is presented as a powerful tool for the detection of heavy metals (Hg2+). The resultant sensing film was fabricated using a nanofabrication process, known as layer-by-layer embedding (LbL-E) deposition technique. In this sense, both silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) were synthesized using a synthetic chemical protocol as a function of a strict control of three main parameters: polyelectrolyte concentration, loading agent, and reducing agent. The use of metallic nanostructures as sensing materials is of great interest because well-located absorption peaks associated with their LSPR are obtained at 420 nm (AgNPs) and 530 nm (AuNPs). Both plasmonic peaks provide a stable real-time reference that can be extracted from the spectral response of the optical fiber sensor, giving a reliable monitoring of the Hg2+ concentration.Publication Open Access Smarterial – Smart matter optomagnetic(2021) Irisarri Erviti, Josu; Marzo Pérez, Asier; Galarreta Rodríguez, Itziar; Estatistika, Informatika eta Matematika; Ingeniaritza; Zientziak; Institute of Smart Cities - ISC; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Ingeniería; CienciasSmart materials, also known as programmable materials, are a combination of different components that have the capability to change shape, move around and adapt to numerous situations by applying an external controllable field. Previous works have used optically guided matter or magnetically actuated materials, but similarly to soft robots, they are limited in spatial resolution or strength. Here we propose combining a low temperature thermoplastic polymer Polycaprolactone (PCL) with ferromagnetic powder particles (Fe). Focused light can heat this compound at specific locations and make it malleable. These heated spots can be actuated by external magnetic fields. Once the material cools down, this process can be repeated, or reversed. The compound can be actuated contact-less in the form of 3D slabs, 2D sheets, and 1D filaments. We show applications for reversible tactile displays and manipulation of objects. The laboratory team has characterised the density, weight, magnetic attraction, magnetic force, phase change, thermal and electrical conductivity and heat difusión (spread point test) for smart ferromagnetic compounds of different mixture proportions. The main advantages of this smart matter optomagnetic are the high spatial resolution of light and the strong force of magnetic attraction whilst mechanical properties of polymers are practically conserved. Due to the low temperature required and the possibility to use infrared or electromagnetic induction to heat the compound, the smart material can be used in air, water, or inside biological tissue. Eventually, Smart materials will enrich collaborative movements, such as grab and hold, and more complex ones, as reshaping and reassembling.Publication Open Access SteCal: a powerful tool for improving the student engagement in the design and development of low-alloys steels for high performance applications(Servicio Editorial de la Universidad del País Vasco-Euskal Herriko Unibertsitateko Argitalpen Zerbitzua, 2019) Rivero Fuente, Pedro J.; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2In this work, it is presented the use of a specific software known as SteCal 3.0 (Microsoft Windowsbased application) which is successfully employed as a didactic and instructional method for future students in Engineering Degrees (mostly Mechanical Engineering, Mechanical Design Engineering and Industrial Technologies Engineering, among others). First of all, it is important to remark that steel is one of the most important metallic materials in our society which can be widely used in a high variety of different sectors such as automotive, construction, structural, packaging or manufacturing, among others. One of the main reasons of this great multifunctionality is associated to its intrinsic properties such as a high mechanical resistance and hardness combined with a high toughness and easy formability. According to this, SteCal is very useful software for comparing the properties of several steels with different chemical composition, which can help to suggest the most appropriate composition for a specific application. As a function of the input experimental parameters (varying alloying elements), this program can help to the students a better comprehension on diverse metallurgical aspects obtainable with low-alloy steels such as thermal behaviour (austenizing temperature, eutectoid reaction, normalizing, quenching, tempering) as well as important concepts related to the resultant mechanical properties (martensitic structure, susceptibility to quench-cracking, hardness, Jominy End-Quench hardenability). Due to this, two different types of steel with different chemical composition are evaluated according to the designation from the American Iron and Steel Institute (AISI) such as AISI 1330 and AISI 4147, respectively. Finally, a better student engagement has been observed along all these years of implementation of this didactic software because the future students in Engineering Degrees can deep about theoretical and important concepts with the aim of designing steels with specific properties of high technological interest.Publication Open Access Study of the degradation of heat exchanger materials in the acidic environment of Teide National Park(2019) Catalán Ros, Leyre; Pérez Artieda, Miren Gurutze; Berlanga Labari, Carlos; Garacochea Sáenz, Amaia; Rodríguez García, Antonio; Domínguez, Vidal; Montañez, Ana Carolina; Padilla, Germán D.; Pérez, Nemesio M.; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; IngenieríaSupplying power to volcanic monitoring stations constitutes a challenge due to both the access difficulties and the acidic environment associated with volcanoes. ELECTROVOLCAN project is developing thermoelectric generators that make use of the temperature of the available fumaroles to directly supply electricity to the stations in a robust, compact and reliable way. The main element of thermoelectric generators are the thermoelectric modules, based on Seebeck effect. Nonetheless, since the efficiency of these modules increases with the temperature difference between their sides, the introduction of heat exchangers becomes essential. The present study analyses the behavior of different materials used in the construction of the heat exchangers in the acidic environment of Teide National Park.Publication Open Access Ventajas de aprender Ciencia y Tecnología de Materiales con el uso de software informáticos(Adaya Press, 2020) Rivero Fuente, Pedro J.; Ingeniería; Ingeniaritza; Institute for Advanced Materials and Mathematics - INAMAT2El uso de software informáticos son una herramienta clave para el desarrollo y mejora continua en el aprendizaje de los estudiantes de grados universitarios, y el hecho adoptar tecnologías en la enseñanza supone un proceso complejo de intervención educativa y evaluación para la toma de decisiones. En el Grado de Ingeniería Mecánica de la Universidad Pública de Navarra (UPNA), la metodología utilizada para la enseñanza de Ciencia y Tecnología de Materiales consiste en la combinación de sesiones magistrales con el uso de softwares y recursos web con acceso a bases de datos de materiales para que pueden experimentar y conocer de forma más profunda la importancia de los materiales en el mundo que nos rodea. En esta presentación se incide en la importancia de conocer los materiales poliméricos desde un punto de vista de las propiedades mecánicas, ópticas, térmicas y de reciclabilidad que les servirá de gran medida para conocer el comportamiento en servicio de estos materiales en aplicaciones de nivel industrial. Por último, los resultados obtenidos derivados de las encuestas docentes, así como las competencias adquiridas han sido valoradas de forma muy positiva por los estudiantes, habiendo un claro efecto estimulante en enseñanza y aprendizaje entre profesor y alumno.