Elosúa Aguado, César

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Elosúa Aguado

First Name

César

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 47
  • PublicationOpen Access
    From fundamental materials chemistry to sensing applications: unravelling the water adsorption mechanism of a luminescent optical fibre sensor membrane
    (Elsevier, 2024) Cruz Quesada, Guillermo; Rosales Reina, María Beatriz; López Torres, Diego; Reinoso, Santiago; López Ramón, María Victoria; Arzamendi Manterola, Gurutze; Elosúa Aguado, César; Espinal Viguri, Maialen; Garrido Segovia, Julián José; Ciencias; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute for Advanced Materials and Mathematics - INAMAT2; Institute of Smart Cities - ISC; Zientziak; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work provides insight into the correlation between the luminescent response of a water-vapour optical fibre sensor and the textural properties of its lanthanide-doped silica coating. To this end, a library of 16 silica xerogels derived from combinations between 2 lanthanide dopants (EuIII, TbIII) and 8 antenna ligands was synthesised and characterised by photoluminescence spectroscopy and N2 and CO2 adsorption-desorption isotherms, among others. Based on the best luminescent response and most-suited porous texture, the material doped with TbIII and 2,2′-(4-(2-Ethoxyethoxy)pyridine-2,6-diyl)bis(4,5-dihydrooxazole) was selected to construct the probe. A film of this material was affixed to a commercial silica fibre by dip-coating and the resulting sensor was tested in a climatic chamber with relative humidity ranging from 20 to 90% to obtain normalised time-response and calibration curves at three temperatures. The response was linear up to certain water-vapour concentrations, beyond which abruptly changed to polynomial, acting against the sensor resolution. The adsorption mechanism was elucidated by comparing the isosteric enthalpies of adsorption calculated from the sensor calibration curves to those determined from the monolith water-vapour isotherms, revealing that capillary condensation in the membrane mesopores was the key phenomenon leading to the response deviating from linearity.
  • PublicationOpen Access
    Development of an in-fiber nanocavity towards detection of volatile organic gases
    (MDPI, 2006) Elosúa Aguado, César; Matías Maestro, Ignacio; Bariáin Aisa, Cándido; Arregui San Martín, Francisco Javier; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    A fiber optic sensor for Volatile Organic Compounds (VOCs) detection has been developed and characterized for some organic gasses. The sensor is based on a novel vapochromic material, which is able to change its optical properties in presence of organic vapors in a reversely way. A nano Fabry Perot is constructed onto a cleaved ended optical fiber pigtail by Electrostatic Self Assembly method (ESA), doping this structure with the vapochromic material. Employing a reflection scheme, a change in the intensity modulated reflected signal at 850 nm have been registered. The response of the sensor has been evaluated for five different VOCs, and a deeper study has been made for vapors of three different alcohols.
  • PublicationOpen Access
    Pyridine vapors detection by an optical fibre sensor
    (MDPI, 2008) Elosúa Aguado, César; Bariáin Aisa, Cándido; Matías Maestro, Ignacio; Rodríguez, Antonio; Colacio, Enrique; Salinas Castillo, Alfonso; Segura Carretero, Antonio; Fernández Gutiérrez, Alberto; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    An optical fibre sensor has been implemented towards pyridine vapors detection; to achieve this, a novel vapochromic material has been used, which, in solid state, suffers a change in colour from blue to pink-white in presence of pyridine vapours. This complex is added to a solution of PVC (Poly Vinyl Chloride), TBP (Tributylphosphate) and tetrahydrofuran (THF), forming a plasticized matrix; by dip coating technique, the sensing material is fixed onto a cleaved ended optical fibre. The fabrication process was optimized in terms of number of dips and dipping speed, evaluating the final devices by dynamic range. Employing a reflection set up, the absorbance spectra and changes in the reflected optical power of the sensors were registered to determine their response. A linear relation between optical power versus vapor concentration was obtained, with a detection limit of 1 ppm (v/v).
  • PublicationOpen Access
    Application of gold complexes in the development of sensors for volatile organic compounds
    (World Gold Council, 2007) Luquin Martínez, Asunción; Elosúa Aguado, César; Vergara, Elena; Estella Redín, Juncal; Cerrada, Elena; Bariáin Aisa, Cándido; Matías Maestro, Ignacio; Garrido Segovia, Julián José; Laguna, Mariano; Química Aplicada; Kimika Aplikatua; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa
    Two different kinds of sensors have been developed by using the same kind of vapochromic complexes. The vapochromic materials [Au2Ag2(C6F5)(4)L-2](n) have different colours depending on the ligand L. These materials change, reversibly, their optical properties, colour and fluorescence, in the presence of the vapours of volatile organic compounds (VOCs). For practical applications, two different ways of fixing the vapochromic material to the optical fibre have been used: the sol-gel technique and the electrostatic self-assembly method (ESA). With the first technique the sensors can even be used to detect VOCs in aqueous solutions, and using the second method it has been possible to develop nanosensors.
  • PublicationOpen Access
    Luminescence-based optical sensors fabricated by means of the layer-by-layer nano-assembly technique
    (MDPI, 2017) Acha Morrás, Nerea de; Elosúa Aguado, César; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    Luminescence-based sensing applications range from agriculture to biology, including medicine and environmental care, which indicates the importance of this technique as a detection tool. Luminescent optical sensors are required to be highly stable, sensitive, and selective, three crucial features that can be achieved by fabricating them by means of the layer-by-layer nano-assembly technique. This method permits us to tailor the sensors0 properties at the nanometer scale, avoiding luminophore aggregation and, hence, self-quenching, promoting the diffusion of the target analytes, and building a barrier against the undesired molecules. These characteristics give rise to the fabrication of custom-made sensors for each particular application.
  • PublicationOpen Access
    Gamification for photonics students: labescape
    (MDPI, 2021) Pérez Herrera, Rosa Ana; Tainta Ausejo, Santiago; Elosúa Aguado, César; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The idea of utilizing game elements in non-gaming situations has sparked a lot of attention in recent years, especially in topics such as education and training. Game-based techniques appear to be an increasing trend in a wide range of learning areas, including health, social policy, and engineering, among others, not only in primary school but also in higher formal education. Using this methodology, the learning process becomes more stimulating while also reaching a competitive level in some circumstances. In the present work, the authors propose a new gamification strategy based on an escape-room in which all the puzzles to be passed are related to the area of optics and photonics and use readily available or low-cost equipment. The major field of application of this novel teaching strategy will be the practical section of a course, that is usually carried out in a laboratory, and will be aimed at both undergraduate and master's degree students. A coevaluation method is also proposed where the rest of the students will provide valuable feedback to each one of their colleagues and to the instructor.
  • PublicationOpen Access
    Route towards a label-free optical waveguide sensing platform based on lossy mode resonances
    (IFSA Publishing, 2019) Ruiz Zamarreño, Carlos; Zubiate Orzanco, Pablo; Ozcariz Celaya, Aritz; Elosúa Aguado, César; Socorro Leránoz, Abián Bentor; Urrutia Azcona, Aitor; López Torres, Diego; Acha Morrás, Nerea de; Ascorbe Muruzabal, Joaquín; Vitoria Pascual, Ignacio; Imas González, José Javier; Corres Sanz, Jesús María; Díaz Lucas, Silvia; Hernáez Sáenz de Zaitigui, Miguel; Goicoechea Fernández, Javier; Arregui San Martín, Francisco Javier; Matías Maestro, Ignacio; Del Villar, Ignacio; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Gobierno de Navarra / Nafarroako Gobernua,0011-1365-2017- 000117; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA26
    According to recent market studies of the North American company Allied Market Research, the field of photonic sensors is an emerging strategic field for the following years and it is expected to garner $18 billion by 2021. The integration of micro and nanofabrication technologies in the field of sensors has allowed the development of new technological concepts such as lab-on-a-chip which have achieved extraordinary advances in terms of detection and applicability, for example in the field of biosensors. This continuous development has allowed that equipment consisting of many complex devices that occupied a whole room a few years ago, at present it is possible to handle them in the palm of the hand; that formerly long duration processes are carried out in a matter of milliseconds and that a technology previously dedicated solely to military or scientific uses is available to the vast majority of consumers. The adequate combination of micro and nanostructured coatings with optical fiber sensors has permitted us to develop novel sensing technologies, such as the first experimental demonstration of lossy mode resonances (LMRs) for sensing applications, with more than one hundred citations and related publications in high rank journals and top conferences. In fact, fiber optic LMR-based devices have been proven as devices with one of the highest sensitivity for refractometric applications. Refractive index sensitivity is an indirect and simple indicator of how sensitive the device is to chemical and biological species, topic where this proposal is focused. Consequently, the utilization of these devices for chemical and biosensing applications is a clear opportunity that could open novel and interesting research lines and applications as well as simplify current analytical methodologies. As a result, on the basis of our previous experience with LMR based sensors to attain very high sensitivities, the objective of this paper is presenting the route for the development of label-free optical waveguide sensing platform based on LMRs that enable to explore the limits of this technology for bio-chemosensing applications.
  • PublicationOpen Access
    Microstructured optical fiber sensor for soil moisture measurements
    (Optical Society of America, 2018) López Aldaba, Aitor; López Torres, Diego; Campo-Bescós, Miguel; López Rodríguez, José Javier; Yerro Lizarazu, David; Elosúa Aguado, César; Arregui San Martín, Francisco Javier; Auguste, Jean-Louis; Jamier, Raphael; Roy, Philippe; López-Amo Sáinz, Manuel; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Ingeniaritza; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniería
    A discrete sensor based on a Sn0₂-FP (Fabry-Pérot) cavity is presented and characterized in real soil conditions. Results are compared, for the first time to our knowledge, with a commercial capacitive sensor and gravimetric measurements.
  • PublicationOpen Access
    Labescape and breakout: gamification for photonics students
    (IATED, 2021) Pérez Herrera, Rosa Ana; Tainta Ausejo, Santiago; Elosúa Aguado, César; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Nowadays, the idea of using game mechanisms in non-gaming environments has become of great interest in different fields such as education or training. Not only for primary school but also in higher formal education, game-based learning appears to be an emerging trend in wide-ranging knowledge areas such as health, social policy, or engineering, among others. By employing this methodology, the process of learning becomes more motivating while reaching, in some cases, a competitive level. Game-based learning has been widely adopted in many engineering learning areas, such as for example electronics thanks to the ready availability of low-cost electronic equipment. The authors' extensive teaching experience in subjects related to electronics and photonics has led us to consider its implementation in more ambitious teaching fields. For instance, and despite the broad acceptance, its use in the field of photonics is still very scarce. The high cost of required equipment has hindered the expansion of these strategies, taking its implementation longer than desired and being too expensive at times. In the present work, the authors propose a planning and design scheme for a new gamification strategy based on an escape-room in which, all the tests to be passed will be related to the field of optics and photonics using low-cost equipment. The main field of application of this novel teaching strategy will be in the practical section of the subjects that is usually carried out in a laboratory and will be aimed at both undergraduate and master's degree students. The resolution of tests in different game sequences of the escape room is proposed, that is, linear, open, or multi-linear paths, adapting the degree of difficulty of the tests to the level of the group of students. Additionally, a co-evaluation method is suggested where the rest of the students will provide a valuable feedback to each one of their colleagues.
  • PublicationOpen Access
    Optical sensors based on lossy-mode resonances
    (Elsevier Science, 2017) Matías Maestro, Ignacio; Ascorbe Muruzabal, Joaquín; Acha Morrás, Nerea de; López Torres, Diego; Zubiate Orzanco, Pablo; Sánchez Zábal, Pedro; Urrutia Azcona, Aitor; Socorro Leránoz, Abián Bentor; Rivero Fuente, Pedro J.; Hernáez Sáenz de Zaitigui, Miguel; Elosúa Aguado, César; Goicoechea Fernández, Javier; Bariáin Aisa, Cándido; Corres Sanz, Jesús María; Ruiz Zamarreño, Carlos; Arregui San Martín, Francisco Javier; Del Villar, Ignacio; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC