Albiac Alesanco, Fernando José

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Albiac Alesanco

First Name

Fernando José

person.page.departamento

Estadística, Informática y Matemáticas

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 5 of 5
  • PublicationOpen Access
    Greedy approximation for biorthogonal systems in quasi-Banach spaces
    (Instytut Matematyczny, 2021) Albiac Alesanco, Fernando José; Ansorena, José L.; Berná, Pablo M.; Wojtaszczyk, Przemyslaw; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    The general problem addressed in this work is the development of a systematic study of the thresholding greedy algorithm for general biorthogonal systems in quasi-Banach spaces from a functional-analytic point of view. If (Formula Presented) is a biorthogonal system in X then for each x ∈ X we have a formal expansion (Formula Presented). The thresholding greedy algorithm (with threshold ε > 0) applied to x is formally defined as (Formula Presented). The properties of this operator give rise to the different classes of greedy-type bases. We revisit the concepts of greedy, quasi-greedy, and almost greedy bases in this comprehensive framework and provide the (non-trivial) extensions of the corresponding characterizations of those types of bases. As a by-product of our work, new properties arise, and the relations among them are carefully discussed.
  • PublicationOpen Access
    New parameters and Lebesgue-type estimates in greedy approximation
    (Cambridge University Press, 2022) Albiac Alesanco, Fernando José; Ansorena, José L.; Berná, Pablo M.; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The purpose of this paper is to quantify the size of the Lebesgue constants (𝑳𝑚)∞ 𝑚=1 associated with the thresholding greedy algorithm in terms of a new generation of parameters that modulate accurately some features of a general basis. This fine tuning of constants allows us to provide an answer to the question raised by Temlyakov in 2011 to find a natural sequence of greedy-type parameters for arbitrary bases in Banach (or quasi-Banach) spaces which combined linearly with the sequence of unconditionality parameters (𝒌𝑚)∞ 𝑚=1 determines the growth of (𝑳𝑚)∞ 𝑚=1. Multiple theoretical applications and computational examples complement our study.
  • PublicationOpen Access
    Asymptotic greediness of the Haar system in the spaces Lp[0 , 1] , 1< p< ∞
    (Springer, 2019) Albiac Alesanco, Fernando José; Ansorena, José L.; Berná, Pablo M.; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas
    Our aim in this paper is to attain a sharp asymptotic estimate for the greedy constant Cg[H(p), Lp] of the (normalized) Haar system H(p) in Lp[0 , 1] for 1 < p < ∞. We will show that the super-democracy constant of H(p) in Lp[0 , 1] grows as p∗= max { p, p/ (p- 1) } as p∗ goes to ∞. Thus, since the unconditionality constant of H(p) in Lp[0 , 1] is p∗- 1 , the well-known general estimates for the greedy constant of a greedy basis obtained from the intrinsic features of greediness (namely, democracy and unconditionality) yield that p∗≲Cg[H(p),Lp]≲(p∗)2. Going further, we develop techniques that allow us to close the gap between those two bounds, establishing that, in fact, Cg[H(p), Lp] ≈ p∗. Our work answers a question that was raised by Hytonen (2015).
  • PublicationOpen Access
    Bidemocratic bases and their connections with other greedy-type bases
    (Springer, 2023) Albiac Alesanco, Fernando José; Ansorena, José L.; Berasategui, Miguel; Berná, Pablo M.; Lassalle, Silvia; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In nonlinear greedy approximation theory, bidemocratic bases have traditionally played the role of dualizing democratic, greedy, quasi-greedy, or almost greedy bases. In this article we shift the viewpoint and study them for their own sake, just as we would with any other kind of greedy-type bases. In particular we show that bidemocratic bases need not be quasi-greedy, despite the fact that they retain a strong unconditionality flavor which brings them very close to being quasi-greedy. Our constructive approach gives that for each 1 < p < infinity the space L-p has a bidemocratic basis which is not quasi-greedy. We also present a novel method for constructing conditional quasi-greedy bases which are bidemocratic, and provide a characterization of bidemocratic bases in terms of the new concepts of truncation quasi-greediness and partially demo-cratic bases.
  • PublicationOpen Access
    Weak forms of unconditionality of bases in greedy approximation
    (Instytut Matematyczny, 2022) Albiac Alesanco, Fernando José; Ansorena, José L.; Berasategui, Miguel; Berná, Pablo M.; Lassalle, Silvia; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2
    We study a new class of bases, weaker than quasi-greedy bases, which retain their unconditionality properties and can provide the same optimality for the thresholding greedy algorithm. We measure how far these bases are from being unconditional and use this concept to give a new characterization of nearly unconditional bases.