Del Villar, Ignacio
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Del Villar
First Name
Ignacio
person.page.departamento
Ingeniería Eléctrica, Electrónica y de Comunicación
person.page.instituteName
ISC. Institute of Smart Cities
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
4 results
Search Results
Now showing 1 - 4 of 4
Publication Open Access Analysis of one-dimensional photonic band gap structures with a liquid crystal defect towards development of fiber-optic tunable wavelength filters(Optical Society of America, 2003) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaA theoretical analysis of a fiber optical photonic band gap based tunable wavelength filter is presented. The design presented here is based on the quarter wave reflector with a liquid crystal defect layer in the middle of the structure. The filter generated by the structure is shifted in wavelength as the voltage applied to the structure is modified. Some critical parameters are analyzed: the effect of the consideration of fiber as the first layer and not the input medium in the shape of the filter, the number of layers of the structure, and the thickness of the defect layer. This last parameter determines the width of the wavelength sweep of the filter, but is limited by the creation of more defects. Some rules of practical implementation of this device are also given.Publication Open Access ESA-based in-fiber nanocavity for hydrogen–peroxide detection(IEEE, 2005) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaA fiber-optic sensor sensitive to hydrogen peroxide has been designed based on the electrostatic layer-by-layer selfassembly method. Prussian blue has been deposited in a polymeric structure formed by Poly(allylamine hydrochloride) and poly(acrylic acid). The concentration that can be detected range between 10 6–10 3 M, and recovery of the sensor after immersion into a reductive agent was demonstrated. The response of the sensor is independent of thepHfor values that range between 4–7.4. Some rules for estimation of the refractive index of the material deposited and the thickness of the bilayers are also presentedPublication Open Access Strategies for fabrication of hydrogen peroxide sensors based on electrostatic self-assembly (ESA) method(Elsevier, 2004) Del Villar, Ignacio; Matías Maestro, Ignacio; Arregui San Martín, Francisco Javier; Echeverría Morrás, Jesús; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Gobierno de Navarra / Nafarroako GobernuaAn optical fiber sensor has been fabricated for detection of 5 M–0.1mM concentrations of hydrogen peroxide with a linear response. The deposition method used is electrostatic self-assembly (ESA) of polymer cationic and anionic layers. Prussian Blue (PB) has been included in the polycation layers. The optical fiber sensor is included in a reflection setup, where the measuring technique is based on the slope of the optical reflected power change caused by oxidation of Prussian White (PW) to Prussian Blue. The sensor recovers after immersion in a reductive agent and is immune against a variety of components. Measurement of hydrogen peroxide has been proved successfully in a wide range pHs between 3 and 9. Some techniques have been applied in order to avoid the lost of indicator.Publication Open Access Molecules assembly toward fiber optic nanosensor development(SPIE, 2004-06-09) Matías Maestro, Ignacio; Del Villar, Ignacio; Arregui San Martín, Francisco Javier; Claus, Richard O.; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta ElektronikoaDifferent optical fiber sensor configurations based on a LBL nano-technique will be presented. With this technique it is possible to fabricate different structures such as nano Fabry Perot interferometers, optical fiber gratings and any other one dimensional photonic bandgap structures that may be used either for sensing applications or for the implementation of other fiber optic devices. Some of the proposed fiber optic sensors have been fabricated and their main characteristics are their negligible temperature dependence, their fast response, the possibility of using low cost LEDs instead of lasers or even the possibility of operating at different wavelengths.