Person: Arazuri Garín, Silvia
Loading...
Email Address
person.page.identifierURI
Birth Date
Research Projects
Organizational Units
Job Title
Last Name
Arazuri Garín
First Name
Silvia
person.page.departamento
Ingeniería
person.page.instituteName
IS-FOOD. Research Institute on Innovation & Sustainable Development in Food Chain
ORCID
0000-0003-2300-7419
person.page.upna
2676
Name
22 results
Search Results
Now showing 1 - 10 of 22
Publication Open Access Exploring the potential of hyperspectral imaging to detect Esca disease complex in asymptomatic grapevine leaves(Elsevier, 2022) Pérez Roncal, Claudia; Arazuri Garín, Silvia; López Molina, Carlos; Jarén Ceballos, Carmen; Santesteban García, Gonzaga; López Maestresalas, Ainara; Ingeniaritza; Estatistika, Informatika eta Matematika; Agronomia, Bioteknologia eta Elikadura; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Ingeniería; Estadística, Informática y Matemáticas; Agronomía, Biotecnología y Alimentación; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPrecise and reliable identification of specific plant diseases is a challenge within precision agriculture nowadays. This is the case of esca, a complex grapevine trunk disease, that represents a major threat to modern viticulture as it is responsible for large economic losses annually. The lack of effective control strategies and the complexity of esca disease expression make essential the identification of affected plants, before symptoms become evident, for a better management of the vineyard. This study evaluated the suitability of a near-infrared hyperspectral imaging (HSI) system to detect esca disease in asymptomatic grapevine leaves of Tempranillo red-berried cultivar. For this, 72 leaves from an experimental vineyard, naturally infected with esca, were collected and scanned with a lab-scale HSI system in the 900-1700 nm spectral range. Then, effective image processing and multivariate analysis techniques were merged to develop pixel-based classification models for the distinction of healthy, asymptomatic and symptomatic leaves. Automatic and interval partial least squares variable selection methods were tested to identify the most relevant wavelengths for the detection of esca-affected vines using partial least squares discriminant analysis and different pre-processing techniques. Three-class and two-class classifiers were carried out to differentiate healthy, asymptomatic and symptomatic leaf pixels, and healthy from asymptomatic pixels, respectively. Both variable selection methods performed similarly, achieving good classification rates in the range of 82.77-97.17% in validation datasets for either three-class or two-class classifiers. The latter results demonstrated the capability of hyperspectral imaging to distinguish two groups of seemingly identical leaves (healthy and asymptomatic). These findings would ease the annual monitoring of disease incidence in the vineyard and, therefore, better crop management and decision making.Publication Open Access Siniestralidad agraria en España (2004 a 2013): factores de riesgo(Blake & Helsey, 2019) Arnal Atarés, Pedro; Jarén Ceballos, Carmen; López Maestresalas, Ainara; Mangado Ederra, Jesús; Arazuri Garín, Silvia; Ingeniería; IngeniaritzaLos datos del presente artículo son, en su mayor parte, los resultados encontrados por Pedro Arnal Atarés en el desarrollo de su tesis doctoral 'Análisis de la información sobre accidentes en el sector agrario recogida en los medios de comunicación en el decenio 2004-2013'. Esta tesis fue dirigida por Carmen Jarén Ceballos. Al objeto de conseguir el Doctorado en Prevención de Riesgos Laborales, la tesis citada se defendió el día 5 de septiembre de 2017 en la Universidad Pública de Navarra y obtuvo la calificación de Sobresaliente.Publication Open Access Phytochemicals determination and classification in purple and red fleshed potato tubers by analytical methods and near infrared spectroscopy(Wiley, 2016) Tierno, Roberto; López Maestresalas, Ainara; Riga, Patrick; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Ruiz de Galarreta, José Ignacio; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakBACKGROUND: Over the last two decades, the attractive colours and shapes of pigmented tubers and the increasing concern about the relationship between nutrition and health have contributed to the expansion of their consumption and a specialty market. Thus, we have quantified the concentration of health promoting compounds such as soluble phenolics, monomeric anthocyanins, carotenoids, vitamin C, and hydrophilic antioxidant capacity, in a collection of 18 purple- and red-fleshed potato accessions. RESULTS: Cultivars and breeding lines high in vitamin C, such as Blue Congo, Morada and Kasta, have been identified. Deep purple cultivars Violet Queen, Purple Peruvian and Vitelotte showed high levels of soluble phenolics, monomeric anthocyanins, and hydrophilic antioxidant capacity, whereas relatively high carotenoid concentrations were found in partially yellow coloured tubers, such as Morada, Highland Burgundy Red, and Violet Queen. CONCLUSION: The present characterisation of cultivars and breeding lines with high concentrations of phytochemicals is an important step both to support the consideration of specialty potatoes as a source of healthy compounds, and to obtain new cultivars with positive nutritional characteristics. Moreover, by using near infrared spectroscopy a non-destructive identification and classification of samples with different levels of phytochemicals is achieved, offering an unquestionable contribution to the potato industry for future automatic discrimination of varieties.Publication Open Access A review of the application of near-infrared spectroscopy for the analysis of potatoes(American Chemical Society, 2013) López Maestresalas, Ainara; Arazuri Garín, Silvia; García Ruiz, Ignacio; Mangado Ederra, Jesús; Jarén Ceballos, Carmen; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Gobierno de Navarra / Nafarroako GobernuaPotato (Solanum tuberosum L.) is one of the most important crops in the world being considered as a staple food in many developing countries. The potato industry like other vegetable and fruit industries is subject to the current demand of quality products. In order to meet this challenge, the food industry is relying on the adoption of nondestructive and environmentally friendly techniques to determine quality of products. Near-infrared spectroscopy (NIRS) is currently one of the most advanced nondestructive technologies regarding instrumentation and application, and it also complies with the environment requirements as it does not generate emissions or waste. This paper reviews research progress on the analysis of potatoes by NIRS both in terms of determination of constituents and classification according to the different constituents of the tubers. A brief description of the fundamentals of NIRS technology and its advantages over other quality assessment techniques is included. Finally, future prospects of the development of NIRS technology at the industrial level are explored.Publication Open Access A multi-year analysis of traffic accidents involving agricultural tractors(AIDIC, 2017) Arnal Atarés, Pedro; López Maestresalas, Ainara; Arazuri Garín, Silvia; Mangado Ederra, Jesús; Jarén Ceballos, Carmen; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta ProiektuakThe agricultural sector in Spain is responsible for a high rate of accidents every year, and many of them are traffic accidents. Tractors are a relatively rare sight on roads, meaning that the incidence of accidents involving these vehicles is relatively low, however, an above-average number of people are seriously injured or killed as a result of such accidents. Tractors are considered responsible for the majority of the occupational accidents in agriculture. Moreover, tractor overturns stand out as the principal cause of fatal accidents mainly because those accidents involved tractors without rollover protective structures (ROPS). Despite the obligation for all tractors of having a protective structure, the incidence rate of accidents with sick leave followed a rising line in the last ten years. Thus, in this study an analysis of the data of traffic accidents involving agricultural tractors in Spain, during the 2004-2013 period, is developed in order to identify the main risk factors that influence them. Official data from the “Statistical Yearbook of Accidents” published annually were used. A total of 2892 accidents were analysed. The results obtained showed that the incidence rate of both accidents and deaths were lower in accidents involving tractors than in general ones, but the consequences were more severe. In addition, the majority of accidents producing victims happened in interurban roads involving two or more vehicles. Defects in the lighting and brake systems were identified as risk of producing an accident. In the majority of the cases, the driver was the only victim of the crash. The total number of victims showed a decreasing tendency while the fatality index remained constant. The age of driver was reported to directly influence the number of accidents, with a high proportion of drivers over 45 years old. The main offences committed by drivers were related to inadequate speed and distracted driving. As much as possible we put our findings in an international context.Publication Open Access Applications of sensing for disease detection(Springer, 2021) Castro, Ana Isabel de; Pérez Roncal, Claudia; Thomasson, J. Alex; Ehsani, Reza; López Maestresalas, Ainara; Yang, Chenghai; Jarén Ceballos, Carmen; Wang, Tianyi; Cribben, Curtis; Marín Ederra, Diana; Isakeit, Thomas; Urrestarazu Vidart, Jorge; López Molina, Carlos; Wang, Xiwei; Nichols, Robert L.; Santesteban García, Gonzaga; Arazuri Garín, Silvia; Peña, José Manuel; Agronomía, Biotecnología y Alimentación; Agronomia, Bioteknologia eta Elikadura; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Ingeniería; Ingeniaritza; Gobierno de Navarra / Nafarroako Gobernua; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe potential loss of world crop production from the effect of pests, including weeds, animal pests, pathogens and viruses has been quantifed as around 40%. In addition to the economic threat, plant diseases could have disastrous consequences for the environment. Accurate and timely disease detection requires the use of rapid and reliable techniques capable of identifying infected plants and providing the tools required to implement precision agriculture strategies. The combination of suitable remote sensing (RS) data and advanced analysis algorithms makes it possible to develop prescription maps for precision disease control. This chapter shows some case studies on the use of remote sensing technology in some of the world’s major crops; namely cotton, avocado and grapevines. In these case studies, RS has been applied to detect disease caused by fungi using different acquisition platforms at different scales, such as leaf-level hyperspectral data and canopy-level remote imagery taken from satellites, manned airplanes or helicopter, and UAVs. The results proved that remote sensing is useful, effcient and effective for identifying cotton root rot zones in cotton felds, laurel wilt-infested avocado trees and escaaffected vines, which would allow farmers to optimize inputs and feld operations, resulting in reduced yield losses and increased profts.Publication Open Access Non-destructive detection of blackspot in potatoes by Vis-NIR and SWIR hyperspectral imaging(Elsevier, 2016) López Maestresalas, Ainara; Keresztes, Janos C.; Goodarzi, Mohammad; Arazuri Garín, Silvia; Jarén Ceballos, Carmen; Saeys, Wouter; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaBlackspot is a subsurface potato damage resulting from impacts during harvesting. This type of bruising represents substantial economic losses every year. As the tubers do not show external symptoms, bruise detection in potatoes is not straightforward. Therefore, a nondestructive and accurate method capable of identifying bruised tubers is needed. Hyperspectral imaging (HSI) has been shown to be able to detect other subsurface defects such as bruises in apples. This method is nondestructive, fast and can be fully automated. Therefore, its potential for non-destructive detection of blackspot in potatoes has been investigated in this study. Two HSI setups were used, one ranging from 400 to 1000 nm, named VisibleNear Infrared (Vis-NIR) and another covering the 1000e2500 nm range, called Short Wave Infrared (SWIR). 188 samples belonging to 3 different varieties were divided in two groups. Bruises were manually induced and samples were analyzed 1, 5, 9 and 24 h after bruising. PCA, SIMCA and PLS-DA were used to build classifiers. The PLS-DA model performed better than SIMCA, achieving an overall correct classification rate above 94% for both hyperspectral setups. Furthermore, more accurate results were obtained with the SWIR setup at the tuber level (98.56 vs. 95.46% CC), allowing the identification of early bruises within 5 h after bruising. Moreover, the pixel based PLS- DA model achieved better results in the SWIR setup in terms of correctly classified samples (93.71 vs. 90.82% CC) suggesting that it is possible to detect blackspot areas in each potato tuber with high accuracy.Publication Open Access Prediction of main potato compounds by NIRS(AIDIC, 2017) López Maestresalas, Ainara; Pérez Roncal, Claudia; Tierno, Roberto; Arazuri Garín, Silvia; Ruiz de Galarreta, José Ignacio; Jarén Ceballos, Carmen; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaPotato (Solanum tuberosum, L) compounds are generally determined by analytical methods including gasliquid chromatography (GLC), HPLC and UV-VIS spectrophotometry. These methods require a lot of time and are destructive. Therefore, they seem to be not suitable for in-line applications in the food industry. Nearinfrared spectroscopy (NIRS) is a technique that presents some advantages over reference methods for quantitative analysis of agricultural and food products since it is fast, reliable and non-destructive. For this reason, in this study, quantitative analyses were carried out to determine main compounds in potatoes using NIRS. Potato tubers grown in two consecutive years were used for the analyses. NIR spectral acquisition was acquired on lyophilized samples. In year 1, a total of 135 samples were used while 228 samples were used in year 2. Lyophilized samples were also scanned by NIRS, two replicates per samples were acquired and the mean spectrum of each sample was used for the analysis. Different chemical analyses were carried out each year. Thus, in year 1 the following parameters were quantified: reducing sugars (RS) and nitrogen (N), whereas in year 2, total soluble phenolics (TSP) and hydrophilic antioxidant capacity (HAC) were extracted and quantified. Then, chemometric analyses were performed using Unscrambler X (version 10.3, CAMO software AS, Oslo, Norway) to correlate wet chemical analysis with spectral data. Quantitative analyses based on PLS regression models were developed in order to predict the above chemical compounds of tubers in a non-destructive manner. Good PLS regression models were obtained for the prediction of nitrogen and TSP with coefficients of determination (R2) above 0.83. Moreover, PLS models obtained for the estimation of HAC could be used for screening and approximate calibrations.Publication Open Access Hyperspectral imaging using notions from type-2 fuzzy sets(Springer, 2019) López Maestresalas, Ainara; Miguel Turullols, Laura de; López Molina, Carlos; Arazuri Garín, Silvia; Bustince Sola, Humberto; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaFuzzy set theory has developed a prolific armamentarium of mathematical tools for each of the topics that has fallen within its scope. One of such topics is data comparison, for which a range of operators has been presented in the past. These operators can be used within the fuzzy set theory, but can also be ported to other scenarios in which data are provided in various representations. In this work, we elaborate on notions for type-2 fuzzy sets, specifically for the comparison of type-2 fuzzy membership degrees, to create function comparison operators. We further apply these operators to hyperspectral imaging, in which pixelwise data are provided as functions over a certain energy spectra. The performance of the functional comparison operators is put to the test in the context of in-laboratory hyperspectral image segmentation.Publication Open Access Proyecto Agroinc: prevención del impacto ambiental de incendios provocados por cosechadoras(Interempresasmedia, 2022) Arazuri Garín, Silvia; Mangado Ederra, Jesús; López Maestresalas, Ainara; López Molina, Carlos; Angulo Muñoz, Blanca; Arnal Atarés, Pedro; Jarén Ceballos, Carmen; Ingeniería; Ingeniaritza; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Proyectos e Ingeniería Rural; Landa Ingeniaritza eta Proiektuak; Institute on Innovation and Sustainable Development in Food Chain - ISFOOD; Gobierno de Navarra / Nafarroako GobernuaLas cosechadoras de cereales, por las condiciones ambientales en las que trabajan, alta temperatura y baja humedad, tanto ambiental como del producto que están cosechando, pueden provocar accidentalmente incendios durante la época de recolección. Los daños económicos y medioambientales que estos incendios suponen pueden ser muy importantes, ya que las condiciones de propagación del fuego son óptimas. Los principales objetivos de este proyecto han sido evaluar el impacto ambiental de los incendios producidos en Navarra en los últimos años y establecer una guía de buenas prácticas para su prevención.
- «
- 1 (current)
- 2
- 3
- »