Marroyo Palomo, Luis

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Marroyo Palomo

First Name

Luis

person.page.departamento

Ingeniería Eléctrica, Electrónica y de Comunicación

person.page.instituteName

ISC. Institute of Smart Cities

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 59
  • PublicationOpen Access
    DC capacitance reduction in three-phase photovoltaic inverters by using virtual impedance emulation
    (IEEE, 2019) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    DC voltage regulation in grid-connected three-phase PV inverters is a fundamental requirement. In order to reduce the influence of the PV non-linear behavior and ensure stability in the whole operating range, the input capacitance in high-power inverters is currently oversized, thus increasing the converter cost. This paper proposes a control method which emulates a virtual impedance in parallel with the PV generator, making it possible to reduce the capacitance by a factor of 5. Simulation results confirm that the proposed control is stable and fast enough in the whole operating range with such a small capacitor.
  • PublicationOpen Access
    Power angle-frequency droop control to enhance transient stability of grid-forming inverters under voltage dips
    (IEEE, 2022) Erdocia Zabala, Ioseba; Urtasun Erburu, Andoni; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Due to the replacement of synchronous generators, grid operators are currently demanding to control grid-connected inverters in grid–forming mode to make them participate in the maintenance of the grid. To carry this out, the traditional droop controls based on the active and reactive powers are usually adopted, achieving a satisfactory performance in normal operation. Nevertheless, the power-frequency (P-ω) droop may become transiently unstable under voltage dips. This is because of the modification of the active power response caused by the inverter current limitation together with the voltage reduction. To enhance this, the power angle-frequency (δinv-ω) droop is proposed, consisting in employing an estimation of the inverter power angle as input to obtain the inverter frequency. The proposed method provides the inverter with the same performance as the P-ω droop in normal operation, while enhancing considerably the transient stability margins under current limitation. This is thanks to the higher variation of the inverter power angle with the phase difference between the inverter and the grid. Simulation results show the transient stability problems of the P-ω droop as well as the superior performance of the proposed δinv-ω droop control, which has also been verified by means of HIL results.
  • PublicationOpen Access
    Control strategy for an integrated photovoltaic-battery system
    (IEEE, 2017) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa eta Elektronikoa; Institute of Smart Cities - ISC; Ingeniería Eléctrica y Electrónica
    In photovoltaic-battery systems, more attention is usually paid to the MPPT control while the battery management is put aside. This paper proposes two control strategies for an integrated PV-battery system, both of them making it possible to perform MPPT or regulate the battery voltage to its maximum value in order to prevent it from overcharging. Simulation results prove the feasibility of both controls.
  • PublicationOpen Access
    Dynamic analysis of the conductance-frequency droop control during current limitation
    (IEEE, 2024-08-30) Urtasun Erburu, Andoni; Erdocia Zabala, Ioseba; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2024-11695
    In inverter-based stand-alone microgrids, the P-f and O-V droop methods are frequently used to keep control of the microgrid voltage. However, in the presence of overloads or short-circuits, in which the inverter must perform a current- limiting strategy, the P-f droop becomes prone to transient instability. In order to remain stable under any possible overload or fault, the conductance-frequency $({G-f})$ droop is a promising alternative, however no analysis about its dynamic response has been carried out so far. This paper proposes a small-signal model of the system during current limitation, proving that the ${G-f}$ droop is also superior to the existing droop methods in terms of rapidity. Simulation results validate the theoretical analysis.
  • PublicationOpen Access
    Outdoor performance of a CdTe based PV generator during 5 years of operation
    (IEEE, 2022) Guerra Menjívar, Moisés Roberto; Parra Laita, Íñigo de la; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    Together with the huge growth of the traditional crystalline silicon (Si-x) PV manufacturers, other thin-film solar cells have also emerged such as cadmium telluride (CdTe) manufacturers. They are characterized by the fact that they were created to reduce costs and by the scarcity of silicon, from which the rest of the modules are made. Despite they need more space to generate the same amount of energy as crystalline modules, their price is supposed to be much lower, and argue that they have a better performance at high temperatures. However, real comparisons between the outdoor performance of CdTe and Si-x modules have been scarcely addressed in the literature. This paper provides a comparison under real operating conditions of a CdTe photovoltaic generator versus a conventional silicon generator during 5 years of operation in a mid-latitude area, identifying the causes of the differences observed.
  • PublicationOpen Access
    Analysis of the active inertia power provided by grid-forming strategies during a RoCoF
    (IEEE, 2024-08-30) Urtasun Salinas, Ibai; Urtasun Erburu, Andoni; Bautista Portillo, Guillermo Antonio; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoa eta Telekomunikazio Ingeniaritza; Institute of Smart Cities - ISC; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa, PJUPNA2024-11695
    Power electronic-based generators are becoming increasingly prevalent in the electrical grid, necessitating their support in disturbances previously handled only by synchronous generators. One of the tests proposed by regulations is to evaluate the response of grid-forming inverters to a Rate of Change of Frequency (RoCoF). However, there is no detailed analysis of the effect of control parameters on the active inertia power. This article presents the temporal response equation of an inverter subject to a RoCoF and introduces the concept of equivalent inertia showing that it also depends on the damping factor. Thanks to this analysis and the flexibility of inverters, the parameter design of existing grid-forming strategies is proposed to achieve the desired active inertia power and system damping ratio. Theoretical analysis and control strategies have been validated by simulation.
  • PublicationOpen Access
    Analysis of polyamide and fluoropolymer backsheets: Degradation and insulation failure in field-aged photovoltaic modules
    (John Wiley & Sons, 2022) Pascual Miqueleiz, Julio María; García Solano, Miguel; Marcos Álvarez, Javier; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Institute of Smart Cities - ISC; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Durability of photovoltaic (PV) modules is of great concern not only from the point of view of cost-effectiveness but also from the point of view of safety and sustainability. The backsheet of a PV module is one of the most critical parts of the PV module from the point of view of protection and also one of the most important sources of PV modules' failure; hence, it is of great importance to understand its different forms of failure. In this paper we analyze the case of an 8-MW PV plant, which had suffered a rapid degradation of their PV modules' backsheets. The case is especially relevant as all the PV modules are from the same model and manufacturer but with different backsheet materials (polyamide and fluoropolymer) and different times of exposure: on one hand, all PV modules originally installed in the plant (i.e., 6 years under operation when tested), and also, extra modules that had been stored indoors for replacement and had been mounted in the plant for less than 1 year when tested, serving as reference modules. In this paper we present the signs of degradation of these PV modules after different times of exposure under real operation using different on-field and laboratory tests. We propose different techniques for rapid diagnosis of backsheet degradation so that the problem can be detected at a very early stage, before it results in major energy losses or in safety issues.
  • PublicationOpen Access
    On the on-site measurement of the degradation rate of crystalline silicon PV modules at plant level
    (IEEE, 2018) Pascual Miqueleiz, Julio María; Berrueta Irigoyen, Alberto; Marcos Álvarez, Javier; García Solano, Miguel; Marroyo Palomo, Luis; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren; Institute of Smart Cities - ISC; Ingeniería Eléctrica, Electrónica y de Comunicación
    This paper proposes a method for measuring the degradation rate of crystalline silicon PV modules at plant level in two different ways as a form of verification. As actual levels of degradation rate have been observed to be as low as 0.2%/a, the uncertainties make it difficult to measure this value accurately at plant level. However, despite the low value, it is still important to know the actual degradation rate due to its impact on energy yield. In this paper, two ways of measuring the degradation rate at plant level are proposed. These two methods, with different uncertainty sources, are proposed to be used jointly in order to have a better approach to the real value. Finally, an example of measurement in a 1.78 MW PV plant is presented.
  • PublicationOpen Access
    Modeling the inherent damping of high-power inverters
    (IEEE, 2020) Erdocia Zabala, Ioseba; Urtasun Erburu, Andoni; Marroyo Palomo, Luis; Ingeniería Eléctrica, Electrónica y de Comunicación; Ingeniaritza Elektrikoa, Elektronikoaren eta Telekomunikazio Ingeniaritzaren
    In order to decide whether passive or active damping is required in a three-phase inverter, a previous step is to assess the intrinsic damping of the system. However, few works focus on modeling this damping for DC/AC operation. This paper proposes two models to reproduce the damping sources: the simulation model, used to validate the system in large-signal, and the small-signal model, which can be employed for the controller design. Both models have been validated by means of experimental results for a 1.64 MVA inverter.
  • PublicationOpen Access
    State-of-charge-based droop control for stand-alone AC supply systems with distributed energy storage
    (Elsevier, 2015) Urtasun Erburu, Andoni; Sanchis Gúrpide, Pablo; Marroyo Palomo, Luis; Ingeniería Eléctrica y Electrónica; Ingeniaritza Elektrikoa eta Elektronikoa; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The droop method is an advantageous technique for stand-alone AC supply systems, allowing for power sharing among various inverters with no need for communication cables. However, in stand-alone systems with multiple distributed energy storage units, the conventional droop methods are unable to control the storage unit state-of-charge (SOC) in order to change simultaneously. Existing techniques endeavor to solve this problem by changing the slope of the P – f curve however this solution compromises the power response performance. As an alternative, this paper proposes a new SOC-based droop control, whereby the P – f curve is shifted either upwards or downwards according to the battery SOC. The proposed technique makes it possible to select the time constant for the battery SOC convergence and, at the same time, to optimize the power response performance. The paper also shows how the SOC changes when the ratios between the battery capacity and the inverter rated power are different and how the proposed technique can limit the SOC imbalance. Simulation and experimental results corroborate the theoretical analysis.