Person: Korili, Sophia A.
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
Korili
First Name
Sophia A.
person.page.departamento
Ciencias
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
55 results
Search Results
Now showing 1 - 10 of 55
Publication Open Access Effect of high pressure on the reducibility and dispersion of the active phase of Fischer-Tropsch catalysts(MDPI, 2019) Yunes, Simón; Vicente, Miguel Ángel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThe effect of high pressure on the reducibility and dispersion of oxides of Co and Fe supported on -Al2O3, SiO2, and TiO2 has been studied. The catalysts, having a nominal metal content of 10 wt.%, were prepared by incipient wetness impregnation of previously calcined supports. After drying at 60 °C for 6 h and calcination at 500 °C for 4 h, the catalysts were reduced by hydrogen at two pressures, 1 and 25 bar. The metal reduction was studied by temperature-programmed reduction up to 750 °C at the two pressures, and the metal dispersion was measured by CO chemisorption at 25 °C, obtaining values between 1% and 8%. The physicochemical characterization of these materials was completed by means of chemical analysis, X-ray diffraction, N2 adsorption-desorption at -196 °C and scanning electron microscopy. The high pressure lowered the reduction temperature of the metal oxides, improving their reducibility and dispersion. The metal reducibility increased from 42%, in the case of Fe/Al2O3 (1 bar), to 100%, in the case of Fe/TiO2 (25 bar).Publication Open Access Metal-Al layered double hydroxides synthesized from aluminum slags as efficient CO2 adsorbents at pre- and post-combustion temperature(Elsevier, 2023) Santamaría Arana, Leticia; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaLayered double hydroxides (LDH) have been proposed as the materials that offer the best performance in the moderate-temperature range, between 200 and 450 °C, for CO2 adsorption, so the effect of some synthesis parameters and surface modification on their adsorption capacities is herein investigated. This work reports the use of M2+ (Co, Mg, Ni and Zn)/Al layered double hydroxides synthesized with a 3:1 molar ratio by the co-precipitation method and using aluminum extracted from saline slags as source of this metal as CO2 adsorbents. The synthesis and use of Zn/TiAl is also reported considering several proportions of Al-Ti. Structural characterization and comparison of the series has been achieved using powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), nitrogen physisorption at single bond196 °C and thermogravimetry measurements (TGA). The performance of calcined LDH as CO2 adsorbents was evaluated in the 50 – 400 °C temperature range and 80 kPa and results show that Ni6Al2 and Mg6Al2 samples present a significant adsorption capacity at low temperature (0.382 and 0.292 mmolCO2/g, respectively). At 400 °C only Mg6Al2 maintains its high adsorption capacity (0.275 mmolCO2/g) compared to the other calcined LDH. Its adsorption capacity at moderate-temperature range was proven to be better than that of a commercial Mg6Al2 sample. In all materials the CO2 adsorption capacity at 200–450 °C increased by incorporating potassium (K2CO3 and KOH as sources) up to 0.58 mmolCO2/g for Mg6Al2 +K2CO3. The addition of the amine TEPA in the low-temperature range worked for Co6Al2 and Mg6Al2 (increment > 40 %). In the case of Zn6Al2, the partial substitution of Al by Ti also increased the CO2 adsorption capacity from 0.177 to 0.244 mmolCO2/g, finding isosteric heats between 17.07 and 23.30 kJ/mol using the Clausius-Clapeyron equation.Publication Open Access Synthesis of zeolite a from metakaolin and its application in the adsorption of cationic dyes(MDPI, 2018) Pereira, Priscila Martins; Ferreira, Breno Freitas; Oliveira, Nathalia Paula; Gil Bravo, Antonio; Korili, Sophia A.; Kimika Aplikatua; Institute for Advanced Materials and Mathematics - INAMAT2; Química AplicadaThe present work reports the synthesis of zeolites from two metakaolins, one derived from the white kaolin and the other derived from the red kaolin, found in a deposit in the city of São Simão (Brazil). The metakaolins were prepared by calcination of the kaolins at 600 ◦C; zeolite A was obtained after alkali treatment of the metakaolins with NaOH. The resulting solids were characterized by powder X-ray diffraction, thermal analysis, scanning electron microscopy, and nitrogen adsorption/desorption at −196 ◦C, which confirmed formation of zeolite A. The zeolites were applied as adsorbents to remove methylene blue, safranine, and malachite green from aqueous solutions. The zeolites displayed high adsorption capacity within short times (between one and five minutes); qt was 0.96 mg/g. The equilibrium study showed that the zeolites had higher adsorption capacity for malachite green (qe = 55.00 mg/g) than for the other two cationic dyes, and that the Langmuir isotherm was the model that best explained the adsorption mechanism.Publication Open Access Development of ceramic-MOF filters from aluminum saline slags for capturing CO2(Elsevier, 2023) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis study describes the procedures followed to synthesize ceramic-MOF filters using aluminum saline slag wastes. Briefly, the raw aluminum saline slags were washed at 80 ◦C to significantly reduce the saline content and eliminate gases. The pretreated material was mixed with glucose (G/S ratios between 0.2 and 1.6) and acetone by stirring for 4 h. After this time, the resulting solid was dried at 60 ◦C and then at 190 ◦C. During the glucose caramelization step, PegMn400 was also added and the temperature increased to 1200 ◦C. The obtained solid was impregnated with precursor solutions to achieve a supported ZIF-8 MOF. The ceramic-MOF filters were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, X-ray fluorescence (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM), thereby confirming the presence of a structure that allows dispersion of the synthesized and supported ZIF-8. Finally, the performance of these ceramic-MOF filters as CO2 adsorbents was evaluated in the temperature range 50–300 ◦C, with isosteric heats of 19 kJ/mol being obtained using the Clausius-Clapeyron equation.Publication Open Access Catalytic valorization of CO2 by hydrogenation: current status and future trends(Taylor and Francis, 2021) Sancho Sanz, Iris; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasTerrestrial environmental and biological systems are being threatened by the tremendous amount of human carbon dioxide emissions. Therefore, it is crucial to develop a sustainable energy system based on CO2 as chemical feedstock. In this review, an introduction to the CO2 activation and transformation has been made, together with a more comprehensive study of the catalytical reduction of CO2 to methane, methanol, and formic acid, which are currently contemplated as chemical feedstocks and/or promising energy carriers and alternative fuels.Publication Open Access Effect of the synthesis method on the morphology, textural properties and catalytic performance of La-hexaaluminates in the dry reforming of methane(Elsevier, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work describes the synthesis of nickel/lanthanum hexaaluminates (NiO/LHA), optimizing the LHA synthesis method, as well as their performance in terms of stability and catalytic activity in the dry reforming of methane (DRM). The synthesis methods studied include co-precipitation, nitrate decomposition and freeze drying, using a La/Al molar ratio of 1:11 in all methods. Drying methods, namely oven drying (4 h at 353 K), vacuum drying (8 h at 353 K) + oven drying (2 h at 423 K) and heat treatment (12 h at 473 K) + oven drying (2 h at 373 K), were also optimized during selection of the final catalyst support. After calcination at 1473 K for 2 h, the presence of lanthanum aluminate (LaAlO3) and traces of LHA were found in all cases. Specific surface areas of 50, 32 and 30 m(2)/g were obtained for the samples AD1 (nitrate decomposition), FD1 (freeze drying), CP1 (co-precipitation). The nitrate decomposition method was selected and optimized to obtain the LHA structure at low temperature in the presence of Ni(II), using a La/Al/Ni molar ratio of 1/15/0.2. The results showed the formation of pure-phase hexaaluminate at 1473 K. The solids obtained were used as supports for nickel catalysts (10 wt%) for DRM at 973 K. The supports and catalysts were characterized by X-ray diffraction (XRD), N-2 adsorption at 77 K, temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The simulation of the TPR patterns of the catalysts allowed determining the type of metal support interaction and the activation energy of the system as well as the rest of the kinetic parameters. A cumulative mean activation energy of 100.7 kJ/mol was determined for the catalysts. The metallic morphologies, dispersion and distribution of NiO on the surface of the LHA support were analyzed considering a theoretical simulation of the reduction profiles, obtaining an average growth factor of 1.4, which indicates that the metallic phase is growing in one and two dimensions. The NiO/LHA catalysts synthesized were found to be active and very stable in the DRM reaction after 20 h of reaction with an average selectivity H-2/CO upper than 0.90. The differences observed can be related to the textural properties developed during the optimized nitrate decomposition method. The characterization analysis by simulation, TPR, XRD, TEM, SEM allowed us to establish the effect of the textural properties, the metal interaction, the growth of the nickel grains and their distribution in the support on the catalytic performance in DRM. The better performance was obtained with the catalysts with higher porosity and greater support metal interaction, which allowed obtaining a better distribution of the metallic phase, thus generating less harmful carbonaceous species for the activity of the catalyst and therefore showing the best values of catalytic stability and conversion. Finally, three types of coke were identified from HR-TEM and EDS analysis: graphitic, filamentous and CNT, showing different effects on the catalytic behavior deactivation being the presence of graphitic more aggressive than the other two species.Publication Open Access Progress in the synthesis and applications of hexaaluminate-based catalysts(Taylor & Francis, 2020) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe development of materials that can exhibit thermal resistance at very high temperatures, thus allowing them to be applied as catalysts and thermal insulators, amongst other possible uses, is a research subject of great interest. This is the case for hexaaluminates, a class of hexagonal aluminate compounds with a unique structure that are stable at very high temperatures up to 1600°C and exhibit exceptional resistance to sintering and thermal shock, thus making them attractive catalysts for high-temperature applications. In this review, the structure of hexaaluminates is presented first. The most recent advances in synthetic methods (sol-gel, reverse microemulsion, hydrothermal synthesis, carbon-templating, solution combustion synthesis, and freeze-drying methods) are discussed subsequently, with the aim of maximizing textural properties and including in their structure metals known to be active in catalytic applications, such as combustion of CH4, partial oxidation, and dry reforming of CH4 to produce synthetic gas, and the decomposition of N2O. Finally, other applications, such as their function as a thermal barrier, are also addressed.Publication Open Access Progress and recent novelties in naphtha reforming catalysts(Elsevier, 2024) Aznárez Salvatierra, María Aránzazu; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaHigh octane gasoline and aromatics, such as benzene, toluene, and xylenes, are both produced by the catalytic reforming of naphtha, being aromatics crucial building blocks in the chemical industry. Competing reactions occurring concurrently and catalyst deactivation under specific operating conditions make catalytic reforming of naphtha a very complicated process. This review focuses on the catalytic naphtha reforming process for aromatics production and makes special emphasis on reforming catalysts (evolution and recent novelties, as well as their deactivation, regeneration, and reactivation processes). Various aspects of the catalytic reforming process, such as the major reforming reactions carried out during the reforming process, types of industrial reforming processes, characteristics of the reviewed reforming processes, and the reaction parameters and their effect on the catalytic reforming process, are also considered in order to establish the context. Reforming catalysts are bifunctional, while some reactions just require the Pt site or the acid function to complete, others require both of these types of sites. Platinum is generally combined with one or two metals, such as Re, Ir, Sn, or Ge. The catalyst's acidic function is determined by chlorine, which also contributes to a high dispersion of the metallic phase. Research into naphtha reforming catalysts is looking for ways to improve aromatics yield and catalyst life. It has been noted that low dehydrogenating capacity and high hydrogenolytic capacity, both of which are provided by Pt, as well as low polymerization capacity, which is provided by the strong acid sites in the support, are the characteristics that make a catalyst stable as a result of the lesser formation of coke. Significant differences in the catalysts' basic composition have not been documented because bi- and trimetallic catalysts are still actively researched due to the complexity of their chemistry, with the identification of the wide variety of sites present within them and the understanding of their chemistry being of utmost importance. Even so, some innovation has occurred in recent years, among which are: non-noble metal reforming catalysts based on metal carbides, metal zeolite composite catalysts, the use of metals (In and Ga) other than those commonly used, and Ce3+-modified zeolites as support.Publication Embargo Improvement of the adsorption properties of an activated carbon coated by titanium dioxide for the removal of emerging contaminants(Elsevier, 2019) Taoufik, Nawal; Elmchaouri, Abdellah; Anouar, Fatna; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; CienciasThree activated carbon coated titanium dioxide composites are evaluated as adsorbents for the removal of three pharmaceutical compounds: clofibric, gallic and salicylic acids from aqueous solutions. These composite materials are characterized by several techniques as SEM, FT-IR, TGA and point of zero charge determination. The adsorption mechanism of acids was investigated and compared to the adsorption on the virgin carbon. The analysis of adsorption isotherms and kinetic properties reveals that the addition of TiO2 increased the adsorption capacities of the initial material. The adsorption kinetics has been studied in terms of pseudo-first and pseudo-second order kinetic models, and the Freundlich, Langmuir, Temkin, Tôth and Sips isotherms models have also been applied to the equilibrium adsorption data. The analysis of results indicated that the adsorption of acids on the activated carbon-titanium dioxide composites is well described by the pseudo-first order kinetic model and the Sips isotherm equation fitted the sorption experimental results better than other models.Publication Open Access Structure and activity of nickel supported on hibonite-type La-hexaaluminates synthesized from aluminum saline slags for the dry reforming of methane(Elsevier, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Zientziak; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThis work describes the procedures followed to obtain four hibonite-type La-hexaaluminates (La-HA) using aluminum saline slag waste as the aluminum source. Briefly, an acid-extracted aluminum solution (8.9 gAl/L) was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and 2-propanol/polyethylene glycol/methanol/1-hexanol/glucose depending on the hydrothermal conditions of the synthesis. The results showed the formation of pure-phase hexaaluminate at 1473 K in all cases, with differences in the textural properties between the materials. The solids obtained were used as supports for nickel catalysts (10 wt.%) for the dry reforming of methane (DRM) at 973 K. The supports and catalysts were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, X-ray fluorescence (XRF), temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM). An effect of the textural properties, dispersión of the metallic phase and nickel-support interaction on the performance of the catalyst was found. Our results also show a new application of a catalyst synthesized from an industrial waste such as aluminum saline slags.