Korili, Sophia A.

Loading...
Profile Picture

Email Address

Birth Date

Job Title

Last Name

Korili

First Name

Sophia A.

person.page.departamento

Ciencias

person.page.instituteName

InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas

person.page.observainves

person.page.upna

Name

Search Results

Now showing 1 - 10 of 56
  • PublicationOpen Access
    Progress and perspectives in the catalytic hydrotreatment of bio-oils: effect of the nature of the metal catalyst
    (American Chemical Society, 2024) Gil Bravo, Antonio; Sancho Sanz, Iris; Korili, Sophia A.; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In recent years, there has been a surge of interest in transforming biomass into fuel, driven by its potential as the only realistic renewable carbon resource. Several conversion methods have been explored to achieve this, including gasification for producing synthesis gas, fast pyrolysis or hydrothermal liquefaction for obtaining bio-oils, and hydrolysis for generating aqueous sugars. Bio-oils offer environmental benefits due to their lower CO2 emissions, but their direct use as fuels is hindered by limitations such as thermal instability, high viscosity and acidity, and low calorific value. Consequently, advancements in treatment methods are necessary before bio-oils can be used as direct fuels. This review focuses on the catalytic hydrotreatment of bio-oils, which has been shown to be an effective approach for the removal of heteroatoms at moderate temperatures (between 300 and 450 °C) but at high pressures (up to 20 MPa). Oxygenated compounds are transformed into H2O, and N and S are transformed into NH3 and H2S, respectively. The analysis examines how process temperature, residence time, hydrogen pressure, solvent selection, and type of catalyst influence the properties of the improved bio-oil. Mo/W sulfide-supported catalysts have been traditionally used as active phases in hydrotreatment processes, as the presence of S limits catalyst deactivation, while the presence of Ni or Co as promoters enhances hydrogenation reactions. New research trends are exploring alternative catalyst formulations, such as metal phosphides, carbides, nitrides, and mesoporous materials as supports with controlled acid-basic properties.
  • PublicationEmbargo
    Zeolite synthesis from industrial wastes
    (Elsevier, 2019) Yoldi Sangüesa, María; Fuentes Ordóñez, Edwin Gustavo; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, PI017 CORRAL
    Conventional synthesis conditions for each type of zeolite are tabulated and reported by the International Zeolite Association Structure Commission (IZA) and most of them are synthesized from commercial reagents, but they can also be synthesized from industrial by-products rich in Si and/or Al. In zeolite synthesis from wastes, concentration of alkali source, temperature, reaction time, liquid/solid ratio and type of waste determine the textural properties, crystal structure, Si/Al ratio and ion exchange characteristics of the fabricated zeolite and its applications. This work summarizes the main methods that have been developed to synthesize zeolites using industrial wastes as Al and/or Si sources, the parameters of synthesis and the advantages and limitations of each synthesis process. The main characteristics and the applications of these synthetic waste zeolites are also reported.
  • PublicationOpen Access
    Recent advances in the application of Ni-perovskite-based catalysts for the dry reforming of methane
    (Taylor & Francis, 2024-09-17) Muñoz Alvear, Helir Joseph; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Ni-based catalysts have been reported to be very efficient in methane reforming processes, surpassing some noble metals. In the particular case of methane reforming in the presence of carbon dioxide (dry reforming of methane, DRM), modifying and controlling the initial properties of the catalyst becomes crucial to resist carbon deposition and Ni metal sintering. This is because the DRM process is carried out at high temperatures. In this sense, perovskite-based catalysts are of special interest given that they are synthesized at high temperatures and, therefore, can conserve their properties during the reaction. Perovskites are represented by the general formula ABO3 or A2BO4. The properties of these oxides depend on the nature of metals A and B and their possible partial substitution, which allows control of their redox and acid/basic properties. This review delves into the thermodynamic and kinetic aspects of the DRM, highlighting that the properties of A and B can affect catalytic performance. Following this, the focus shifts to B-cation substitution, which can increase the catalytic performance of the catalyst via synergistic effects due to the formation of Ni metal alloys. Next, in an analogous manner, the analysis will examine A-cation substitution, which allows control over the acid/basic properties and, therefore, coke formation and deposition. Given the inherently low textural properties of perovskites, methods for enhancing these properties are also summarized. These methods encompass both direct improvements and deposition of the perovskites on a support. Finally, new lines of research focused on softening DRM reaction conditions and promoting the process at lower temperatures are also highlighted.
  • PublicationOpen Access
    Bimetallic (Pt-Ni) La-hexaaluminate catalysts obtained from aluminum saline slags for the dry reforming of methane
    (Elsevier, 2021) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This work describes the synthesis of platinum-nickel/lanthanum hexaaluminates (PtNi/LHA) and their performance in terms of stability and catalytic activity in the dry reforming of methane (DRM) at 973 K. An Al solution (9.40 g/L) obtained from an Al saline slag waste by acid extraction was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and methanol/Peg400/PegMn400 under hydrothermal conditions at 493 K for 16 h. After calcination at 1473 K for 2 h, the presence of LHA was confirmed. Wet impregnation of the synthesized support was used to obtain an initial Ni/LHA catalyst (10 wt% NiO) and the modified PtNi/LHA catalysts (0.2–1 wt% Pt). The support and catalysts were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, temperature- programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR- TEM). The analysis of the TPR patterns for the catalysts allowed the type of metal support interaction and NiO species to be determined, with a weak interaction with the support being observed in all cases. The presence of Pt promoted NiO reducibility. The PtNi/LHA catalysts synthesized were found to be active and very stable in the DRM reaction after reaction for 50 h. The catalytic behavior was evaluated from the CO2 and CH4 conversions, as well as the H2/CO selectivity, with values of between 89% and 92% in almost all the time range evaluated. The presence of Pt improved the stability and catalytic performance of Ni/LHA thus improving resistance to coke formation.
  • PublicationOpen Access
    Effect of gold nanoparticles on SiO2@g-C3N4 catalyst for the degradation of amoxicillin
    (Elsevier, 2024-11-12) Santamaría Arana, Leticia; Korili, Sophia A.; Gil Bravo, Antonio; López de Luzuriaga Fernández, José Manuel; Monge Oroz, Miguel; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    Gold nanoparticles in different proportions (0.5 and 1 %) have been grafted at the surface of a SiO2@g-C3N4 nanotube-based composite (SiO2 nanotubes obtained from halloysite clay) and also g-C3N4 (for comparison purposes) to test their degradation capacity over the antibiotic amoxicillin proving that the introduction of these nanoparticles on the catalyst modifies the degradation mechanism followed by the pollutant. Results obtained show that the introduction of the appropriate percentage of gold NPs in the composite improves amoxicillin degradation efficiency and establish a direct correlation between the presence of gold NPs and the production of ∙O2.
  • PublicationOpen Access
    Synthesis of Cu-Al layered double hydroxides from aluminum saline slags
    (Elsevier, 2023) Boulahbal, Aziza Imene; Santamaría Arana, Leticia; Azizi, A.; Boutahala, Mokhtar; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The use of saline slag, a hazardous waste generated during the recycling of aluminum, as aluminum source for the synthesis CuAl layered double hydroxides (LDH) is for the first time reported in this study. Due to the JahnTeller effect, divalent copper–aluminum LDH come usually with impurities and a pure CuAl LDH is not easy to obtain. The effect of synthesis pH has been examined by comparing LDH synthesized at various pH, ranging from 6 to 12 via a co-precipitation method using aluminum obtained from an alkaline extraction of the slag. For comparison purposes, a sample was synthesized at pH = 9 using commercial aluminum Al(NO3)3⋅9H2O instead of extracted aluminum. The effects of the aging time and calcination temperature are also discussed. The LDH and their calcined metal mixed oxide (layered double oxide, LDO) have been analyzed with several characterization techniques: powder X-ray diffraction (PXRD), N2 adsorption at − 196 ◦C, thermogravimetric analysis (TGA), temperature programmed reduction (TPR), scanning electron microscopy (SEM), transmission electron microscopy and energy-dispersive X-ray spectroscopy (TEM and EDS). Synthesis pH has been proved not only to have a significant effect on the nature of secondary phases but also on the structure and morphology of the samples.
  • PublicationOpen Access
    Multifunctional nanocomposites based on kaolinite/titania/iron applied to hydrogen peroxide production and bisphenol-A removal
    (Elsevier, 2024-11-06) Do Prado, Marcus Vinicius; Lima, Vinicius; Oliveira, Larissa; Nassar, Eduardo José; Marçal, Liziane; Faria, Emerson H. de; Vicente, Miguel Ángel; Trujillano, Raquel; Santamaría Arana, Leticia; Gil Bravo, Antonio; Korili, Sophia A.; Ciuffi, Katia J.; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    The rising global demand for hydrogen peroxide, recognized for its eco-friendly properties, underscores the need for greener synthesis methods. Traditional production processes pose environmental risks, while direct synthesis faces challenges like water formation, explosion hazards, and stability issues, limiting industrial application. On the other hand, Bisphenol A (BPA), an endocrine disruptor widely used in plastics, presents significant environmental and health concerns due to its potential leaching into food and water. The present work introduces efficient and selective photocatalysts aimed at sustainable hydrogen peroxide synthesis and BPA degradation. Both processes were enhanced by the synergistic properties of Fe2O3–TiO2 nanoparticles dispersed within a kaolinite matrix. The Fe2O3-TiO2 photocatalysts, characterized by photoluminescence spectroscopy and X-ray diffraction, showed reduced emission upon iron incorporation and anatase presence on the kaolinite surface. The photocatalytic activity was evaluated through hydroxylation of terephthalic acid, revealing a 127 umol/L min hydroxylation rate for the KaFeTi400 sample. BPA degradation studies indicated optimal performance in acidic conditions, achieving 96 % removal in 2 h and 98 % in 4 h, with the addition of H2O2 enhancing efficiency. Further, the photocatalyst facilitated benzyl alcohol oxidation to benzaldehyde, demonstrating a H2O2 production rate of 120 umol. These findings highlight the multifunctional capabilities and environmental benefits of the photocatalyst, underscoring its potential for sustainable hydrogen peroxide synthesis and broader applications in environmental remediation. The catalysts address the pressing challenges associated with hydrogen peroxide synthesis and pollutant removal, particularly in the context of sustainability and environmental impact.
  • PublicationOpen Access
    Catalytic photodegradation of organic compounds using TiO2/pillared clays synthesized using a nonconventional aluminum source
    (Elsevier, 2022-10-15) Cardona Rodríguez, Yaneth; Wegrzyn, Agnieszka; Miskowiec, Pawel; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This study evaluates the photocatalytic degradation of 2,6-dichlorophenol (2,6-DCP), triclosan (TCS) and bisphenol A (BPA) by ultraviolet (UV) and visible (VIS) light in the presence of TiO2/catalysts synthesized by wet impregnation followed by calcination. The catalyst supports used were three alumina pillared clays (Al-PILC) synthesized using various aluminum sources and montmorillonite (Mt) as raw material. One of the Al-PILC was prepared following the conventional method (Al-PILCCM), using a commercial aluminum salt, and the other two were synthesized using a saline slag, with the aluminum used being extracted with the alkaline (Al-PILCBE) or the acid (Al-PILCAE) method. Mt was impregnated with various amounts of titanium (1, 5, 10, and 20 wt% Ti) and evaluated for the photodegradation of the aforementioned pollutants, comparing the results with those obtained using commercial anatase. Due to the higher conversion rates, 10 and 20 wt% Ti were chosen to impregnate the Al-PILC and to evaluate the photocatalytic performance. All materials were characterized by several techniques, which confirmed the successful formation of TiO2 in the anatase phase. In all cases, photodegradation was higher when using UV light and the most photodegraded pollutant was TCS (85.15 ± 0.49%), followed by 2,6-DCP (65.43 ± 0.79%) and, to a lesser degree, BPA (36.15 ± 0.65%). Al-PILC showed higher photodegradation percentages, with Al-PILCAE exhibiting the highest values for both types of light. An analysis of the photoproducts by HPLC-MS suggested that the preferred pathway for TCS and 2,6-DCP photodegradation depends on the type of light used.
  • PublicationOpen Access
    A comparative study of the catalytic performance of nickel supported on a hibonite-type La-hexaaluminate synthesized from aluminum saline slags in the dry reforming of methane
    (Elsevier, 2022) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    In this work, a hibonite-type Ni/La-hexaaluminate (Ni/LHA) synthesized from an industrial waste is used and compared as catalyst in the dry reforming of methane (DRM) at 973 K. The structure, catalytic behavior, and stability during a run time of at least 50 h of three Nicatalysts obtained from two commercial supports and two preparation methods were used for comparison. An aluminum solution (9.40 g/L) obtained from an aluminum saline slag waste by acid extraction was used to synthesize the hexaaluminate by mixing with a stoichiometric amount of lanthanum nitrate and methanol/Peg400/PegMn400 under hydrothermal conditions at 493 K for 16 h. The Ni/LHA catalyst (10 wt% NiO) was obtained by impregnation of the synthesized support, calcined previously at 1473 K for 2 h. The resulting solids were characterized by several techniques as: X-ray diffraction (XRD), N2 adsorption at 77 K, temperature-programmed reduction (TPR), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM). In order to compare the catalytic behavior and properties of the Ni/LHA catalyst, three Ni catalysts obtained from two commercial supports (g-Al2O3 and SiO2) and two preparation methods (wet impregnation (I) and precipitation-deposition (PD)) were synthesized. Analysis of the TPR patterns for the catalysts allowed the type of metal support interaction and NiO species to be determined, with a weak interaction with the support being observed in Ni/LHA and NieI/ SiO2. The NiO species observed, with crystallite sizes between 9.7 and 40.4 nm, confirm the X-ray structural analyses. The Ni/LHA catalyst was found to be active and very stable in the DRM reaction after 50 h. The catalytic behavior was evaluated from the CO2 and CH4 conversions, as well as the H2/CO selectivity, with values of 99% over almost all the time range evaluated. The behavior of this catalyst is comparable to that of NieI/Al2O3 and NiPD/SiO2. The results found indicating that the strong interaction of nickel with the support favors the stability of the catalysts in the DRM reaction.
  • PublicationOpen Access
    Development of ceramic-MOF filters from aluminum saline slags for capturing CO2
    (Elsevier, 2023) Torrez Herrera, Jonathan Josué; Korili, Sophia A.; Gil Bravo, Antonio; Ciencias; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate Publikoa
    This study describes the procedures followed to synthesize ceramic-MOF filters using aluminum saline slag wastes. Briefly, the raw aluminum saline slags were washed at 80 ◦C to significantly reduce the saline content and eliminate gases. The pretreated material was mixed with glucose (G/S ratios between 0.2 and 1.6) and acetone by stirring for 4 h. After this time, the resulting solid was dried at 60 ◦C and then at 190 ◦C. During the glucose caramelization step, PegMn400 was also added and the temperature increased to 1200 ◦C. The obtained solid was impregnated with precursor solutions to achieve a supported ZIF-8 MOF. The ceramic-MOF filters were characterized by X-ray diffraction (XRD), N2 adsorption at 77 K, X-ray fluorescence (XRF), scanning electron microscopy (SEM) and transmission electron microscopy (HR-TEM), thereby confirming the presence of a structure that allows dispersion of the synthesized and supported ZIF-8. Finally, the performance of these ceramic-MOF filters as CO2 adsorbents was evaluated in the temperature range 50–300 ◦C, with isosteric heats of 19 kJ/mol being obtained using the Clausius-Clapeyron equation.