Publication:
Catalytic photodegradation of organic compounds using TiO2/pillared clays synthesized using a nonconventional aluminum source

Date

2022-10-15

Authors

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2020-112656RB-C21/ES/recolecta
European Commission/Horizon 2020 Framework Programme/801586openaire
Métricas Alternativas

Abstract

This study evaluates the photocatalytic degradation of 2,6-dichlorophenol (2,6-DCP), triclosan (TCS) and bisphenol A (BPA) by ultraviolet (UV) and visible (VIS) light in the presence of TiO2/catalysts synthesized by wet impregnation followed by calcination. The catalyst supports used were three alumina pillared clays (Al-PILC) synthesized using various aluminum sources and montmorillonite (Mt) as raw material. One of the Al-PILC was prepared following the conventional method (Al-PILCCM), using a commercial aluminum salt, and the other two were synthesized using a saline slag, with the aluminum used being extracted with the alkaline (Al-PILCBE) or the acid (Al-PILCAE) method. Mt was impregnated with various amounts of titanium (1, 5, 10, and 20 wt% Ti) and evaluated for the photodegradation of the aforementioned pollutants, comparing the results with those obtained using commercial anatase. Due to the higher conversion rates, 10 and 20 wt% Ti were chosen to impregnate the Al-PILC and to evaluate the photocatalytic performance. All materials were characterized by several techniques, which confirmed the successful formation of TiO2 in the anatase phase. In all cases, photodegradation was higher when using UV light and the most photodegraded pollutant was TCS (85.15 ± 0.49%), followed by 2,6-DCP (65.43 ± 0.79%) and, to a lesser degree, BPA (36.15 ± 0.65%). Al-PILC showed higher photodegradation percentages, with Al-PILCAE exhibiting the highest values for both types of light. An analysis of the photoproducts by HPLC-MS suggested that the preferred pathway for TCS and 2,6-DCP photodegradation depends on the type of light used.

Description

Keywords

Alumina-pillared clay, Aluminum saline slag, Montmorillonite, Organic pollutant, Photodegradation, Titanium catalyst

Department

Zientziak / Institute for Advanced Materials and Mathematics - INAMAT2 / Ciencias

Faculty/School

Degree

Doctorate program

item.page.cita

Cardona, Y.; Węgrzyn, A.; Miśkowiec, P.; Korili, S. A.; Gil, A. (2022). Catalytic photodegradation of organic compounds using TiO2/pillared clays synthesized using a nonconventional aluminum source. Chemical Engineering Journal. Vol. 446 (2)

item.page.rights

© 2022 Elsevier B.V. This is an open access article under the CC BY-NC-ND license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.