López García, José Luis
Loading...
Email Address
person.page.identifierURI
Birth Date
Job Title
Last Name
López García
First Name
José Luis
person.page.departamento
Estadística, Informática y Matemáticas
person.page.instituteName
InaMat2. Instituto de Investigación en Materiales Avanzados y Matemáticas
ORCID
person.page.observainves
person.page.upna
Name
- Publications
- item.page.relationships.isAdvisorOfPublication
- item.page.relationships.isAdvisorTFEOfPublication
- item.page.relationships.isAuthorMDOfPublication
21 results
Search Results
Now showing 1 - 10 of 21
Publication Open Access New analytic representations of the hypergeometric functions p+1Fp(Springer, 2021) López García, José Luis; Palacios Herrero, Pablo; Pagola Martínez, Pedro Jesús; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasThe power series expansions of the hypergeometric functions p+1Fp (a,b1,…,bp;c1,…,cp;z) converge either inside the unit disk |z|<1 or outside this disk |z|>1. Nørlund’s expansion in powers of z/(z−1) converges in the half-plane R(z)<1/2. For arbitrary z0∈C, Bühring’s expansion in inverse powers of z−z0 converges outside the disk |z−z0|= max{|z0|,|z0−1|}. None of them converge on the whole indented closed unit disk |z|≤1,z≠1. In this paper, we derive new expansions in terms of rational functions of z that converge in different regions, bounded or unbounded, of the complex plane that contain the indented closed unit disk. We give either explicit formulas for the coefficients of the expansions or recurrence relations. The key point of the analysis is the use of multi-point Taylor expansions in appropriate integral representations of p+1Fp(a,b1,…,bp;c1,…,cp;z). We show the accuracy of the approximations by means of several numerical experiments.Publication Open Access New recurrence relations for several classical families of polynomials(Taylor and Francis, 2021) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaIn this paper, we derive new recurrence relations for the following families of polynomials: nörlund polynomials, generalized Bernoulli polynomials, generalized Euler polynomials, Bernoulli polynomials of the second kind, Buchholz polynomials, generalized Bessel polynomials and generalized Apostol–Euler polynomials. The recurrence relations are derived from a differential equation of first order and a Cauchy integral representation obtained from the generating function of these polynomials.Publication Open Access Asymptotic approximation of a highly oscillatory integral with application to the canonical catastrophe integrals(Wiley, 2023) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe consider the highly oscillatory integral 𝐹(𝑤) ∶= ∫ ∞ −∞ 𝑒𝑖𝑤(𝑡𝐾+2+𝑒𝑖𝜃𝑡𝑝) 𝑔(𝑡)𝑑𝑡 for large positive values of 𝑤, −𝜋 < 𝜃 ≤ 𝜋, 𝐾 and 𝑝 positive integers with 1 ≤ 𝑝 ≤ 𝐾, and 𝑔(𝑡) an entire function. The standard saddle point method is complicated and we use here a simplified version of this method introduced by López et al. We derive an asymptotic approximation of this integral when 𝑤 → +∞ for general values of 𝐾 and 𝑝 in terms of elementary functions, and determine the Stokes lines. For 𝑝 ≠ 1, the asymptotic behavior of this integral may be classified in four different regions according to the even/odd character of the couple of parameters 𝐾 and 𝑝; the special case 𝑝=1 requires a separate analysis. As an important application, we consider the family of canonical catastrophe integrals Ψ𝐾(𝑥1, 𝑥2,…,𝑥𝐾) for large values of one of its variables, say 𝑥𝑝, and bounded values of the remaining ones. This family of integrals may be written in the form 𝐹(𝑤) for appropriate values of the parameters 𝑤, 𝜃 and the function 𝑔(𝑡). Then, we derive an asymptotic approximation of the family of canonical catastrophe integrals for large |𝑥𝑝|. The approximations are accompanied by several numerical experiments. The asymptotic formulas presented here fill up a gap in the NIST Handbook of Mathematical Functions by Olver et al.Publication Open Access Series representations of the Volterra function and the Fransén–Robinson constant(Elsevier, 2021) López García, José Luis; Pagola Martínez, Pedro Jesús; Palacios Herrero, Pablo; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaThe Volterra function μ(t,β,α) was introduced by Vito Volterra in 1916 as the solution to certain integral equations with a logarithmic kernel. Despite the large number of applications of the Volterra function, the only known analytic representations of this function are given in terms of integrals. In this paper we derive several convergent expansion of μ(t,β,α) in terms of incomplete gamma functions. These expansions may be used to implement numerical evaluation techniques for this function. As a particular application, we derive a numerical series representation of the Fransén–Robinson constant F := µ(1, 1, 0) = R ∞ 0 1 Γ(x) dx. Some numerical examples illustrate the accuracy of the approximationsPublication Open Access Uniform convergent expansions of the error function in terms of elementary functions(Springer, 2023) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaWe derive a new analytic representation of the error function erfz in the form of a convergent series whose terms are exponential and rational functions. The expansion holds uniformly in z in the double sector | arg (±z) | <π/4. The expansion is accompanied by realistic error bounds.Publication Open Access A convergent version of Watson’s lemma for double integrals(Taylor & Francis, 2022) Ferreira González, Chelo; López García, José Luis; Pérez Sinusía, Ester; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaA modification of Watson’s lemma for Laplace transforms ∞ 0 f(t) e−zt dt was introduced in [Nielsen, 1906], deriving a new asymptotic expansion for large |z| with the extra property of being convergent as well. Inspired in that idea, in this paper we derive asymptotic expansions of two-dimensional Laplace transforms F(x, y) := ∞ 0 ∞ 0 f(t,s) e−xt−ys dt ds for large |x| and |y| that are also convergent. The expansions of F(x, y) are accompanied by error bounds. Asymptotic and convergent expansions of some specialfunctions are given as illustration.Publication Open Access Uniformly convergent expansions for the generalized hypergeometric functions p –1Fp and pFp(Taylor & Francis, 2020) López García, José Luis; Pagola Martínez, Pedro Jesús; Karp, D. B.; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y MatemáticasWe derive a convergent expansion of the generalized hypergeometric function p−1 F p in terms of the Bessel functions 0 F 1 that holds uniformly with respect to the argument in any horizontal strip of the complex plane. We further obtain a convergent expansion of the generalized hypergeometric function p F p in terms of the confluent hypergeometric functions 1 F 1 that holds uniformly in any right half-plane. For both functions, we make a further step forward and give convergent expansions in terms of trigonometric, exponential and rational functions that hold uniformly in the same domains. For all four expansions we present explicit error bounds. The accuracy of the approximations is illustrated by some numerical experiments.Publication Open Access Uniform approximations of the first symmetric elliptic integral in terms of elementary functions(Springer, 2022) Bujanda Cirauqui, Blanca; López García, José Luis; Pagola Martínez, Pedro Jesús; Palacios Herrero, Pablo; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Estadística, Informática y Matemáticas; Gobierno de Navarra / Nafarroako GobernuaWe consider the standard symmetric elliptic integral RF(x, y, z) for complex x, y, z. We derive convergent expansions of RF(x, y, z) in terms of elementary functions that hold uniformly for one of the three variables x, y or z in closed subsets (possibly unbounded) of C\ (−∞, 0]. The expansions are accompanied by error bounds. The accuracy of the expansions and their uniform features are illustrated by means of some numerical examples.Publication Open Access Effect of high-energy ball-milling on the magnetostructural properties of a Ni45Co5Mn35Sn15 alloy(Elsevier, 2021) López García, José Luis; Sánchez-Alarcos Gómez, Vicente; Recarte Callado, Vicente; Rodríguez Velamazán, José Alberto; Unzueta, Iraultza; García, José Ángel; Plazaola, Fernando; La Roca, Paulo Matías; Pérez de Landazábal Berganzo, José Ignacio; Zientziak; Institute for Advanced Materials and Mathematics - INAMAT2; Ciencias; Gobierno de Navarra / Nafarroako Gobernua, PC017-018 AMELECThe effect of high-energy ball-milling on the magnetostructural properties of a Ni45Co5Mn35Sn15 alloy in austenitic phase at room temperature has been analyzed by neutron and high-resolution X-ray diffraction. The ball milling promotes a mechanically-induced martensitic transformation as well as the appearance of amorphous-like non-transforming regions, following a double stage; for short milling times (below 30 min), a strong size reduction and martensite induction occur. On the opposite, for longer times, the increase of strains predominates and consequently a larger amount of non-transforming regions appears. The effect of the microstructural defects brought by milling (as dislocations) on both the enthalpy change at the martensitic transformation and the high field magnetization of the austenite has been quantitatively estimated and correlated to the internal strains. Contrary to what occurs in ternary Ni-Mn-Sn alloys, the mechanically-induced defects do not change the ferromagnetic coupling between Mn atoms, but just cause a net reduction on the magnetic moments.Publication Open Access Uniform convergent expansions of integral transforms(American Mathematical Society, 2021) López García, José Luis; Palacios Herrero, Pablo; Pagola Martínez, Pedro Jesús; Estadística, Informática y Matemáticas; Estatistika, Informatika eta Matematika; Institute for Advanced Materials and Mathematics - INAMAT2; Universidad Pública de Navarra / Nafarroako Unibertsitate PublikoaSeveral convergent expansions are available for most of the special functions of the mathematical physics, as well as some asymptotic expansions [NIST Handbook of Mathematical Functions, 2010]. Usually, both type of expansions are given in terms of elementary functions; the convergent expansions provide a good approximation for small values of a certain variable, whereas the asymptotic expansions provide a good approximation for large values of that variable. Also, quite often, those expansions are not uniform: the convergent expansions fail for large values of the variable and the asymptotic expansions fail for small values. In recent papers [Bujanda & all, 2018-2019] we have designed new expansions of certain special functions, given in terms of elementary functions, that are uniform in certain variables, providing good approximations of those special functions in large regions of the variables, in particular for large and small values of the variables. The technique used in [Bujanda & all, 2018-2019] is based on a suitable integral representation of the special function. In this paper we face the problem of designing a general theory of uniform approximations of special functions based on their integral representations. Then, we consider the following integral transform of a function g(t) with kernel h(t, z), F(z) := 1 0 h(t, z)g(t)dt. We require for the function h(t, z) to be uniformly bounded for z ∈D⊂ C by a function H(t) integrable in t ∈ [0, 1], and for the function g(t) to be analytic in an open region Ω that contains the open interval (0, 1). Then, we derive expansions of F(z) in terms of the moments of the function h, M[h(·, z), n] := 1 0 h(t, z)tndt, that are uniformly convergent for z ∈ D. The convergence of the expansion is of exponential order O(a−n), a > 1, when [0, 1] ∈ Ω and of power order O(n−b), b > 0, when [0, 1] ∈/ Ω. Most of the special functions F(z) having an integral representation may be cast in this form, possibly after an appropriate change of the integration variable. Then, special interest has the case when the moments M[h(·, z), n] are elementary functions of z, because in that case the uniformly convergent expansion derived for F(z) is given in terms of elementary functions. We illustrate the theory with several examples of special functions different from those considered in [Bujanda & all, 2018-2019].
- «
- 1 (current)
- 2
- 3
- »