Publication:
EOLO, a wind energy forecaster based on public information and automatic learning for the Spanish Electricity Markets

Consultable a partir de

2026-03-23

Date

2024-03-23

Authors

Prieto-Herráez, Diego
Martínez-Lastras, Saray
Asensio, María Isabel
González-Aguilera, Diego

Director

Publisher

Elsevier
Acceso embargado / Sarbidea bahitua dago
Artículo / Artikulua
Versión aceptada / Onetsi den bertsioa

Project identifier

European Commission/Horizon 2020 Framework Programme/101036926openaire
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTC-2017-6635-3
AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107685RB-I00/ES/recolecta
Impacto
OpenAlexGoogle Scholar
cited by count

Abstract

For the correct operation of the electricity system, producers must provide an estimate of the energy they are going to discharge into the system, and they must face financial penalties if their forecasts are wrong. This is especially difficult in the case of renewable energies, and in particular wind energy because of its variability and intermittency. The tool proposed allows, in a first step, to improve the prediction of wind energy to be produced and, in a second step, to optimize the offer to be presented to the electricity market, so that the overall economic performance can be improved. This tool is based on the use of public information and automatic learning and has been evaluated on a set of 30 wind farms in Spain, using their historical production data. The results indicate improvements in both the accuracy of the energy estimation and the profit obtained from the energy sold.

Description

Keywords

Automatic learning, Electricity markets, Feature selection, Public information, Renewable energy, Wind power forecasting

Department

Estadística, Informática y Matemáticas / Estatistika, Informatika eta Matematika

Faculty/School

Degree

Doctorate program

item.page.cita

Prieto-Herráez, D., Martínez-Lastras, S., Frías-Paredes, L., Asensio, M. I., González-Aguilera, D. (2024). EOLO, a wind energy forecaster based on public information and automatic learning for the Spanish Electricity Markets. Measurement: Journal of the International Measurement Confederation, 231, 1-17. https://doi.org/10.1016/j.measurement.2024.114557

item.page.rights

© 2024 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.