EOLO, a wind energy forecaster based on public information and automatic learning for the Spanish Electricity Markets
dc.contributor.author | Prieto-Herráez, Diego | |
dc.contributor.author | Martínez-Lastras, Saray | |
dc.contributor.author | Frías Paredes, Laura | |
dc.contributor.author | Asensio, María Isabel | |
dc.contributor.author | González-Aguilera, Diego | |
dc.contributor.department | Estadística, Informática y Matemáticas | es_ES |
dc.contributor.department | Estatistika, Informatika eta Matematika | eu |
dc.date.accessioned | 2024-11-18T10:41:46Z | |
dc.date.issued | 2024-05-31 | |
dc.date.updated | 2024-11-18T10:31:45Z | |
dc.description.abstract | For the correct operation of the electricity system, producers must provide an estimate of the energy they are going to discharge into the system, and they must face financial penalties if their forecasts are wrong. This is especially difficult in the case of renewable energies, and in particular wind energy because of its variability and intermittency. The tool proposed allows, in a first step, to improve the prediction of wind energy to be produced and, in a second step, to optimize the offer to be presented to the electricity market, so that the overall economic performance can be improved. This tool is based on the use of public information and automatic learning and has been evaluated on a set of 30 wind farms in Spain, using their historical production data. The results indicate improvements in both the accuracy of the energy estimation and the profit obtained from the energy sold. | |
dc.description.sponsorship | This work has been supported by the Ministerio de Ciencia, Innovación y Universidades, Spain, grant contract RTC-2017-6635-3; by the Ministerio de Economía y Competitividad, Spain, grant contract PID2019-107685RB-I00; by the Fundación General de la Universidad de Salamanca, Spain, grant contract PC_TCUE2-23_012; by the European Regional Development Fund (ERDF) and the Department of Education of the regional government, the Junta of Castilla y León, Spain, grant contract SA089P20; and by the European Union's Horizon 2020 - Research and Innovation Framework Program under grant agreement ID 101036926. | en |
dc.embargo.lift | 2026-05-31 | |
dc.embargo.terms | 2026-05-31 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.citation | Prieto-Herráez, D., Martínez-Lastras, S., Frías-Paredes, L., Asensio, M. I., González-Aguilera, D. (2024). EOLO, a wind energy forecaster based on public information and automatic learning for the Spanish Electricity Markets. Measurement: Journal of the International Measurement Confederation, 231, 1-17. https://doi.org/10.1016/j.measurement.2024.114557 | |
dc.identifier.doi | 10.1016/j.measurement.2024.114557 | |
dc.identifier.issn | 0263-2241 | |
dc.identifier.uri | https://academica-e.unavarra.es/handle/2454/52523 | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Measurement (2024), vol. 231, 114557 | |
dc.relation.projectID | info:eu-repo/grantAgreement/European Commission/Horizon 2020 Framework Programme/101036926/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTC-2017-6635-3/ES/ | |
dc.relation.projectID | info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107685RB-I00/ES/ | |
dc.relation.publisherversion | https://doi.org/10.1016/j.measurement.2024.114557 | |
dc.rights | © 2024 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0 | |
dc.rights.accessRights | info:eu-repo/semantics/embargoedAccess | |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.subject | Automatic learning | en |
dc.subject | Electricity markets | en |
dc.subject | Feature selection | en |
dc.subject | Public information | en |
dc.subject | Renewable energy | en |
dc.subject | Wind power forecasting | en |
dc.title | EOLO, a wind energy forecaster based on public information and automatic learning for the Spanish Electricity Markets | en |
dc.type | info:eu-repo/semantics/article | |
dc.type.version | info:eu-repo/semantics/acceptedVersion | |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 2fc7260a-edd4-4ef0-bd4a-cd70cb2d7c0a | |
relation.isAuthorOfPublication.latestForDiscovery | 2fc7260a-edd4-4ef0-bd4a-cd70cb2d7c0a |