EOLO, a wind energy forecaster based on public information and automatic learning for the Spanish Electricity Markets

dc.contributor.authorPrieto-Herráez, Diego
dc.contributor.authorMartínez-Lastras, Saray
dc.contributor.authorFrías Paredes, Laura
dc.contributor.authorAsensio, María Isabel
dc.contributor.authorGonzález-Aguilera, Diego
dc.contributor.departmentEstadística, Informática y Matemáticases_ES
dc.contributor.departmentEstatistika, Informatika eta Matematikaeu
dc.date.accessioned2024-11-18T10:41:46Z
dc.date.issued2024-05-31
dc.date.updated2024-11-18T10:31:45Z
dc.description.abstractFor the correct operation of the electricity system, producers must provide an estimate of the energy they are going to discharge into the system, and they must face financial penalties if their forecasts are wrong. This is especially difficult in the case of renewable energies, and in particular wind energy because of its variability and intermittency. The tool proposed allows, in a first step, to improve the prediction of wind energy to be produced and, in a second step, to optimize the offer to be presented to the electricity market, so that the overall economic performance can be improved. This tool is based on the use of public information and automatic learning and has been evaluated on a set of 30 wind farms in Spain, using their historical production data. The results indicate improvements in both the accuracy of the energy estimation and the profit obtained from the energy sold.
dc.description.sponsorshipThis work has been supported by the Ministerio de Ciencia, Innovación y Universidades, Spain, grant contract RTC-2017-6635-3; by the Ministerio de Economía y Competitividad, Spain, grant contract PID2019-107685RB-I00; by the Fundación General de la Universidad de Salamanca, Spain, grant contract PC_TCUE2-23_012; by the European Regional Development Fund (ERDF) and the Department of Education of the regional government, the Junta of Castilla y León, Spain, grant contract SA089P20; and by the European Union's Horizon 2020 - Research and Innovation Framework Program under grant agreement ID 101036926.en
dc.embargo.lift2026-05-31
dc.embargo.terms2026-05-31
dc.format.mimetypeapplication/pdfen
dc.identifier.citationPrieto-Herráez, D., Martínez-Lastras, S., Frías-Paredes, L., Asensio, M. I., González-Aguilera, D. (2024). EOLO, a wind energy forecaster based on public information and automatic learning for the Spanish Electricity Markets. Measurement: Journal of the International Measurement Confederation, 231, 1-17. https://doi.org/10.1016/j.measurement.2024.114557
dc.identifier.doi10.1016/j.measurement.2024.114557
dc.identifier.issn0263-2241
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/52523
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofMeasurement (2024), vol. 231, 114557
dc.relation.projectIDinfo:eu-repo/grantAgreement/European Commission/Horizon 2020 Framework Programme/101036926/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/RTC-2017-6635-3/ES/
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107685RB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.1016/j.measurement.2024.114557
dc.rights© 2024 Elsevier Ltd. This manuscript version is made available under the CC-BY-NC-ND 4.0
dc.rights.accessRightsinfo:eu-repo/semantics/embargoedAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAutomatic learningen
dc.subjectElectricity marketsen
dc.subjectFeature selectionen
dc.subjectPublic informationen
dc.subjectRenewable energyen
dc.subjectWind power forecastingen
dc.titleEOLO, a wind energy forecaster based on public information and automatic learning for the Spanish Electricity Marketsen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/acceptedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication2fc7260a-edd4-4ef0-bd4a-cd70cb2d7c0a
relation.isAuthorOfPublication.latestForDiscovery2fc7260a-edd4-4ef0-bd4a-cd70cb2d7c0a

Files

Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Prieto_EOLO.pdf
Size:
3.99 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: