Monitoring rainfed alfalfa growth in semiarid agrosystems using Sentinel-2 imagery

dc.contributor.authorEcheverría Obanos, Andrés
dc.contributor.authorUrmeneta, Alejandro
dc.contributor.authorGonzález de Audícana Amenábar, María
dc.contributor.authorGonzález de Andrés, Ester
dc.contributor.departmentZientziakeu
dc.contributor.departmentIngeniaritzaeu
dc.contributor.departmentInstitute for Multidisciplinary Research in Applied Biology - IMABen
dc.contributor.departmentInstitute on Innovation and Sustainable Development in Food Chain - ISFOODen
dc.contributor.departmentCienciases_ES
dc.contributor.departmentIngenieríaes_ES
dc.contributor.funderGobierno de Navarra / Nafarroako Gobernuaes
dc.date.accessioned2022-03-10T08:00:01Z
dc.date.available2022-03-10T08:00:01Z
dc.date.issued2021
dc.description.abstractThe aim of this study was to assess the utility of Sentinel-2 images in the monitoring of the fractional vegetation cover (FVC) of rainfed alfalfa in semiarid areas such as that of Bardenas Reales in Spain. FVC was sampled in situ using 1 m2 surfaces at 172 points inside 18 alfalfa fields from late spring to early summer in 2017 and 2018. Different vegetation indices derived from a series of Sentinel-2 images were calculated and were then correlated with the FVC measurements at the pixel and parcel levels using different types of equations. The results indicate that the normalized difference vegetation index (NDVI) and FVC were highly correlated at the parcel level (R 2 = 0.712), where as the correlation at the pixel level remained moderate across each of the years studied. Based on the findings, another 29 alfalfa plots (28 rainfed; 1 irrigated) were remotely monitored operationally for 3 years (2017–2019), revealing that location and weather conditions were strong determinants of alfalfa growth in Bardenas Reales. The results of this study indicate that Sentinel-2 imagery is a suitable tool for monitoring rainfed alfalfa pastures in semiarid areas, thus increasing the potential success of pasture management.en
dc.description.sponsorshipAndres Echeverria was supported by a predoctoral fellowship from the Government of Navarra. This work was supported by the knowledge transfer contract 2018020023 UPNA-Bardenas Reales Committee with partial collaboration of the project PID2019-107386RB-I00/AEI/10.13039/ 501100011033 (MINECO/FEDER-UE).en
dc.format.extent13 p.
dc.format.mimetypeapplication/pdfen
dc.format.mimetypeapplication/zipen
dc.identifier.doi10.3390/rs13224719
dc.identifier.issn2072-4292 (Electronic)
dc.identifier.urihttps://academica-e.unavarra.es/handle/2454/42492
dc.language.isoengen
dc.publisherMDPIen
dc.relation.ispartofRemote Sensing 2021, 13, 4719en
dc.relation.projectIDinfo:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-107386RB-I00/ES/
dc.relation.publisherversionhttps://doi.org/10.3390/rs13224719
dc.rights© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.en
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/
dc.subjectSatelliteen
dc.subjectVegetation indicesen
dc.subjectSemiarid environmenten
dc.subjectBardenas Realesen
dc.subjectLegumesen
dc.subjectForage cropsen
dc.subjectSustainable agrosystemsen
dc.titleMonitoring rainfed alfalfa growth in semiarid agrosystems using Sentinel-2 imageryen
dc.typeinfo:eu-repo/semantics/article
dc.type.versioninfo:eu-repo/semantics/publishedVersion
dspace.entity.typePublication
relation.isAuthorOfPublication511c97f0-fc99-4def-8fbc-4c3c713d915c
relation.isAuthorOfPublication11f357a1-5ba6-4243-afc1-3616f2f5480d
relation.isAuthorOfPublication006b0156-62a5-424f-b13a-319445defabb
relation.isAuthorOfPublication.latestForDiscovery11f357a1-5ba6-4243-afc1-3616f2f5480d

Files

Original bundle
Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Echeverria_MonitoringRainfed.pdf
Size:
1.56 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
Echeverria_MonitoringRainfed_MatCompl (1).zip
Size:
353.23 KB
Format:
ZIP
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed to upon submission
Description: