Publication:
In silico analysis of the expression profile of AA9 Lytic Polysaccharide Monooxygenases (LPMOs) and the CDH Cellobiose Dehydrogenase enzyme in wood-degrader Agaricomycetes. The Pleurotus ostreatus case

Date

2024-08-22

Authors

Roscales, Gabriel
Chuina Tomazeli, Emilia
Honda, Yoichi
Lipzen, Anna
Lail, Kathleen
Bauer, Diane
Barry, Kerrie
Grigoriev, Igor V.

Director

Publisher

Elsevier
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/RTI2018-099371-B-I00/ES/recolecta
MINECO//AGL2015-66833-R/ES/recolecta
European Commission/Horizon 2020 Framework Programme/727624openaire
Métricas Alternativas

Abstract

Lignocellulose, the Earth's most abundant biopolymer, is degraded by wood-decaying fungi, specifically white rot fungi (WRF) and brown rot fungi (BRF), which use different strategies. This study examines the expression profiles of the AA9 and CDH enzymes of three WRF species (Heterobasidion annosum, Phanerochaete chrysosporium, and Pleurotus ostreatus) and two BRF species (Fomitopsis pinicola and Rhodonia placenta) from the Agaricomycetes class, grown on poplar wood or glucose as the sole carbon source. Mycelia were collected between days 10 and 12, revealing distinct lignocellulose degradation strategies between WRF and BRF, evidenced by the upregulation of AA9 LPMO (lytic polysaccharide monooxygenases) and AA3_1 (Cellobiose Dehydrogenase) genes, with the co-occurrence of both types of transcripts at the time of mycelial collection. The genome analysis showed variability in the number of AA9LPMO genes between WRF and BRF, which were differentially regulated depending on the carbon source. WRF exhibited a significant upregulation of AA9 LPMO genes,. In Phanerochaete chrysosporium, only one AA9LPMO gene was homologous to Pleurotus ostreatus, which had the highest number of AA9LPMO genes among the WRF studied. Some AA9 LPMO genes in Pleurotus ostreatus were associated to transposable elements (TEs, mainly footprints of LTRs) and grouped in clustered. LTRs were found either in the flanking or within the gene coding regions with no effect on gene transcription. In silico analysis of the AA9LPMO proteins in WRF uncovered distinct features at their C-terminal ends. Most of them lacked an appended module, but those with a CBM1 were highly induced in poplar wood media. The proportion of AA9 proteins with a CBM1 module was similar in Phanerochaete chrysosporium and Heterobasidion irregulare, but lower in Pleurotus ostreatus, which contained more AA9LPMO genes overall. In Pleurotus ostreatus, AA9LPMO proteins were grouped into three clades based on their C oxidizing type, with each clade containing proteins with specific features. The abundance (redundancy) of AA9LPMO genes in WRF especially associated to footprints LTRs in Pleurotus ostreatus suggests these genes may have other roles beyond lignocellulose degradation.

Description

Keywords

Fungal enzymes, Gene cluster, Lignocellulose, Transposon footprint, Wood degradation

Department

Institute for Multidisciplinary Research in Applied Biology - IMAB

Faculty/School

Degree

Doctorate program

item.page.cita

Jiménez I., Roscales G., Garde E., Chuina Tomazeli E., Honda Y., Lipzen A., Lail K., Bauer D., Barry K., Grigoriev I.V., Ramírez L. (2024) In silico analysis of the expression profile of AA9 Lytic Polysaccharide Monooxygenases (LPMOs) and the CDH Cellobiose Dehydrogenase enzyme in wood-degrader Agaricomycetes. The Pleurotus ostreatus case. Current Research in Biotechnology, 8, 1-15. https://doi.org/10.1016/j.crbiot.2024.100244.

item.page.rights

© 2024 The Authors. This is an open access article under the CC BY-NC license.

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.