Docosahexaenoic acid ameliorates contextual fear memory deficits in the Tg2576 Alzheimer´s disease mouse model: cellular and molecular correlates

Date

2023

Authors

Badesso, Sara
Espelosín, María
Cuadrado-Tejedor, Mar
García-Osta, Ana

Director

Publisher

MDPI
Acceso abierto / Sarbide irekia
Artículo / Artikulua
Versión publicada / Argitaratu den bertsioa

Project identifier

  • AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2017-2020/PID2019-104921RB-I00/ES/ recolecta
Impacto

Abstract

Docosahexaenoic acid (DHA), the most abundant polyunsaturated fatty acid in the brain, is essential for successful aging. In fact, epidemiological studies have demonstrated that increased intake of DHA might lower the risk for developing Alzheimer’s disease (AD). These observations are supported by studies in animal models showing that DHA reduces synaptic pathology and memory deficits. Different mechanisms to explain these beneficial effects have been proposed; however, the molecular pathways involved are still unknown. In this study, to unravel the main underlying molecular mechanisms activated upon DHA treatment, the effect of a high dose of DHA on cognitive function and AD pathology was analyzed in aged Tg2576 mice and their wild-type littermates. Transcriptomic analysis of mice hippocampi using RNA sequencing was subsequently performed. Our results revealed that, through an amyloid-independent mechanism, DHA enhanced memory function and increased synapse formation only in the Tg2576 mice. Likewise, the IPA analysis demonstrated that essential neuronal functions related to synaptogenesis, neuritogenesis, the branching of neurites, the density of dendritic spines and the outgrowth of axons were upregulated upon-DHA treatment in Tg2576 mice. Our results suggest that memory function in APP mice is influenced by DHA intake; therefore, a high dose of daily DHA should be tested as a dietary supplement for AD dementia prevention.

Description

Keywords

Alzheimer's disease, DHA, Synapse

Department

Ciencias de la Salud / Osasun Zientziak

Faculty/School

Degree

Doctorate program

item.page.cita

Badesso, S., Cartas-Cejudo, P., Espelosin, M., Santamaria, E., Cuadrado-Tejedor, M., & Garcia-Osta, A. (2022). Docosahexaenoic acid ameliorates contextual fear memory deficits in the Tg2576 Alzheimer’s disease mouse model: cellular and molecular correlates. Pharmaceutics, 15(1), 82. https://doi.org/10.3390/pharmaceutics15010082

item.page.rights

© 2022 by the authors. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.

Licencia

Los documentos de Academica-e están protegidos por derechos de autor con todos los derechos reservados, a no ser que se indique lo contrario.